Environmental Consulting \& Technology, Inc.

SCOPE OF WORK

DATA GAPS

Available Sanborn fire insurance maps were reviewed in an effort to address concerns about possible data gaps in the subject property historical uses. Maps for the following years were available through Environmental Data Resources, Inc. (EDR): 1922, 1928, 1950 and 1965.

The 1922 Sanborn map indicated that Southeast $5^{\text {th }}$ Terrace (south Dell Street), Southeast $5^{\text {th }}$ Avenue (Middle Street), Southeast $6^{\text {th }}$ Street (north Dell Street) and Depot Avenue were all present. Sweetwater Branch was shown on the map, as well as the Municipal Light \& Water Plant (adjacent existing GRU water plant). At that time, the subject properties contained vacant land and multiple residential dwellings. The railroad line was shown located to the adjacent south, in the middle of Depot Avenue.

In the 1928 map, the properties looked very similar. However, one new structure was noted. A storage building was located along Southeast $5^{\text {th }}$ Terrace (south Dell Street, with an associated gasoline tank shown. A general warehouse and a cement products plant (concrete bulk plant and kiln) had been constructed just east of the subject properties. The 1950 fire insurance map indicated that the warehouse building located at the site (original warehouse for the Operations Center) has been constructed and was currently being used by a general contractor. The storage building was still located along Southeast $5^{\text {th }}$ Terrace (south Dell Street). The map indicated that the small storage building was also used as a garage for vehicle storage. Residential structures were still located on the remaining

Mr. H. Reid Rivers
Gainesville Regional Utilities
June 23, 2011
Page 2
sections of what is now known as Parcel 2. Additional residential dwellings were also shown both east and west of Southeast $6^{\text {th }}$ Street (north Dell Street), on the current Parcel 1 property.

Significant changes to the properties had occurred by the time the 1965 Sanborn map was drawn. On Parcel 1, a small commercial building had been built and the west section of the property was labeled as Municipal Parking. Multiple residential dwellings were still located west of Southeast $6^{\text {th }}$ Street and at least one residential dwelling remained west of $6^{\text {th }}$ Terrace. On Parcel 2, a building addition to the Operation Center warehouse building had been constructed and the building was actually labeled "Utility Dept. Operations Center". The map indicated that a gasoline tank had been located along the east side of the warehouse at that time. A large section of Parcel 2 was labeled as parking and storage. Two storage buildings were shown near the southwest corner of the parcel, and a third storage building located adjacent to Southeast Depot Avenue. Multiple residential dwellings were still located adjacent to Southeast $7^{\text {th }}$ Street (Roper Avenue) and Southeast Depot Avenue. The railroad line was still shown running through Depot Avenue.

Copies of the available Sanborn Maps are provided in Appendix A.

Based on the review of the available Sanborn Maps, the property uses were documented back to 1922 . The 1922 map indicated that the subject property contained undeveloped land and residential property. This indicated that the subject property was first developed for residential use prior to 1922. The 1928 Sanborn map showed the first commercial structure (a storage building and gasoline tank), and the 1950 Sanborn map indicated the first major commercial development with the construction of the Operations Center warehouse. Based on the historical information, a data gap would exist from 1922 until first development. However, this data gap does not appear to be an environmental concern based on the documented property uses in 1922.

Lead Testing Survey

On April 13, 2011, American Management Resources Corporation (AMRC) conducted onsite testing of building components for the presence of lead-based paint. Testing was performed using an X-Ray Florescence (XRF) instrument, which provided instant concentration readings. A total of 325 samples were tested throughout the following buildings:

- Operations Center and Warehouse (Warehouse \#1)
- Warehouse \#2
- Wastewater Building
- Field Service Building
- Field Services Technician Building

Mr. H. Reid Rivers
Gainesville Regional Utilities
June 23, 2011
Page 3

Twenty of the samples tested indicated lead at concentrations above the EPA standard of 1.0 milligrams per centimeters squared $\left(\mathrm{mg} / \mathrm{cm}^{2}\right)$. A summary of these sample results is as follows:

Sample No.	Building	Sample Results $\mathrm{mg} / \mathrm{cm}^{2}$	Material Description
7	Warehouse \#2	1.7	Ramp Frame - metal
8	Warehouse \#2	1.8	Ramp Hand Rail - metal
9	Warehouse \#2	1.0	Ramp Wall/Curb - concrete
26	Warehouse \#2	1.0	Safety Hand Rail - metal
29	Warehouse \#1 (OC)	1.0	Door Frame, metal - SE Corner Door
31	Warehouse \#1 (OC)	1.0	Structural Steel, metal - SE Corner Door
32	Warehouse \#1 (OC)	1.7	Driveway Safety Post - metal
34	Warehouse \#1 (OC)	1.0	Structural Steel, shade cover, metal - East side
47	Warehouse \#1 (OC)	>9.9	Safety stripes on Warehouse floor - concrete
50	Warehouse \#1 (OC)	1.0	Door frame, metal - West side door with "not an exit sign" over it
53	Warehouse \#1 (OC)	2.4	Stair Frame, metal - to north side overhead storage
54	Warehouse \#1 (OC)	1.4	Stair Tread, metal - to north side overhead storage
55	Warehouse \#1 (OC)	1.0	Stair Hand Rail - to north side overhead storage
59	Warehouse \#1 (OC)	1.0	Safety Railing, metal - upstairs storage NE
196	Operations Center	1.0	Door Lintle, metal - NW door
238	Wastewater Bldg	1.0	Door Frame, metal - to exterior SW corner
242	Wastewater Bldg	7.3	Foyer Floor - ceramic
247	Wastewater Bldg	6.2	Rear Foyer Floor - ceramic
248	Wastewater Bldg	6.5	Men's Bathroom Floor ceramic
292	Field Service Tech Bldg	3.2	Door frame, metal - back door

Notes: OC - Operation Center Warehouse
However, detectable lead concentrations were measured in a majority of the samples tested. Therefore, the Occupational Safety and Health Administration (OSHA) lead in

Mr. H. Reid Rivers Gainesville Regional Utilities
June 23, 2011
Page 4
construction standard (29 Code of Federal Regulation [CFR] 1926.62) applies if any type of demolition, remodeling, or construction activities will be conducted that may disturb any detectable lead concentration. A copy of the full report from AMRC is included in Appendix B.

ECT recommends that if any demolition, remodeling, or construction activities will be conducted in the areas where detectable lead concentrations were documented, the contractor uses appropriate work practices to ensure that lead exposures are not created. An air monitoring and sampling plan would also be advised.

ASBESTOS CONTAINING MATERIALS SURVEY

On May 25, 2011, ECT performed a limited Asbestos Containing Materials (ACM) Survey. The survey was performed in general accordance with the EPA National Emissions Standards for Hazardous Air Pollutants (NESHAP) survey requirements and using the EPA Asbestos Hazard Emergency Response Act sampling protocols. A total of 139 samples were collected throughout the following buildings:

- Operations Center and Warehouse (Warehouse \#1)
- Wastewater Building
- Field Service Building
- Field Services Technician Building

Any material containing more than one percent asbestos is considered to be an ACM according to the EPA asbestos regulations (40 CFR Part 763) and OSHA standards (29 CFR 1926.1101 and 1910.1001). Five of the 139 samples collected indicated asbestos above the 1 percent limit:

Sample No.	Building	Sample Results	Material Description
51	Field Services	25% Chrysotile	Unknown color vinyl floor tile (bottom layer), front doorway
72	Field Services	3% Chrysotile	Grey window caulking on the front exterior of building
74	Operations Center $\&$ Warehouse in the rear bathroom	40% Chrysotile under the	
85	10% Amosite	White pipe insulation with white wrap in main mechanical room	
96	 Warehouse	10% Chrysotile	Black condensation barrier under the sink in west kitchenette area

Note: Duplicate samples from the areas that indicated positive results were not analyzed.

Mr. H. Reid Rivers
Gainesville Regional Utilities
June 23, 2011
Page 5

The asbestos detected in the window caulk, floor tile, and condensation barrier was considered to be an EPA NESAHP Category II, non-friable material. However, the asbestos detected in the white pipe insulation with white wrap was considered to be friable, and is therefore a regulated ACM (RACM). All materials were observed to be in good condition. A copy of the full ACM Survey report is included in Appendix C.

ECT recommends that should any renovation, construction or demolition activities be conducted, an accredited asbestos abatement contractor be consulted prior to beginning activities. The ACM detected during the survey would have a high damage potential, which could result in non-friable material becoming recategorized as friable material, and would therefore be considered an RACM.

SOIL AND GROUNDWATER INVESTIGATIONS

FIELD METHODOLOGIES

On April 13 and 14, 2011, ECT mobilized to the site to conduct subsurface soil and groundwater investigations. A total of 29 soil borings (SB-1 through SB-29) were installed on Parcel 1 and Parcel 2. Along with the soil samples collected at each boring location, five of the borings were utilized to collected groundwater samples. A site plan, providing an aerial view of the subject properties, is provided in Figure 1. Figure 2 presents a boring location plan and indicates the various areas of concern on each parcel.

The soil borings were completed to depths ranging from 0.5 to 15 feet. Soil samples were collected from the borings at 1 - or 2 -foot intervals, depending on the area of concern, and screened using an organic vapor analyzer equipped with a flame ionization detector (OVA-FID). The samples were also inspected for visual and olfactory evidence of impact.

One soil sample in each boring was collected for laboratory analysis from the sample that generally indicated the highest OVA concentration in the vadose zone (above the estimated groundwater table). Soil borings SB-16 and SB-17 were used to evaluate both the aboveground storage tank (AST) area and the former railroad corridor. Therefore, two soil samples were collected from these borings: one sample at 0.5 feet for railroad corridor analytes and one deeper sample selected based on OVA measurements for the AST area analytes.

The soil samples were shipped to Alpha Analytics, Inc. in Orlando, Florida, for various analyses depending on the area of concern. The following is a summary of the analyses performed:

- Parcel 1 Parking Area: volatile organic carbons (VOCs) by U.S. Environmental Protection Agency (EPA) Method 8260B, polynuclear aromatic hydrocarbons (PAHs) by EPA Method 8310, total recoverable petroleum hydrocarbons (TRPH) by the FL-PRO Method, 8 Resource Conservation and Recovery Act (RCRA) metals by EPA Method 6010B
- West Property Boundary: VOCs, PAHs, TRPH, and RCRA metals

Mr. H. Reid Rivers
Gainesville Regional Utilities
June 23, 2011
Page 6

- Operations Center: VOCs, PAHs, TRPH, and RCRA metals
- Generator Area: VOCs, PAHs, TRPH and RCRA metals
- AST Area: VOCs, PAHs, TRPH and RCRA metals
- Railroad Corridor: PAHs and RCRA metals
- Parcel 2 Parking Area: VOCs, PAHs, TRPH, RCRA metals, and polychlorinated biphenyls (PCBs) by EPA Method 608
- PCB Building: VOCs, PAHs, TRPH, RCRA metals, and PCBs

FIELD RESULTS

Organic vapor concentrations were recorded at each sample interval in each of the 29 soil borings. The concentrations ranged from 0 to 2,544 parts per million (ppm) unfiltered. After a carbon filter was applied, the concentrations ranged from 0 to $1,398 \mathrm{ppm}$ (net concentration). The soils encountered during the soil borings mainly consisted of gray, brown and yellow sand; silty sand; clayey sands; and occasional peat. Some soil staining was observed, but it appeared to be related to the naturally occurring organic peat material in the soil.

Four of the soil borings indicated soil vapor concentrations above $10 \mathrm{ppm}: \mathrm{SB}-4, \mathrm{SB}-5$ SB-6 and SB-7. Soil boring SB-4 indicated elevated OVA measurements at the 4 -to 6 - ft sample $(1,398 \mathrm{ppm}$) and the 6 to 8 ft sample (146 ppm). Moderate to low vapor concentrations were recorded the full length (10 ft) of SB-5, with the highest reading ($1,280 \mathrm{ppm}$) measured in the 8 to 10 ft sample. The highest vapor concentration in SB-6 occurred at a depth of 6 to 8 feet (106 ppm). In each of these sample locations, the elevated OVA measurements also coincided with a layer of black, peat material. SB-7 exhibited very low vapor concentrations in the 10 to 12 ft sample (12 ppm). The OVA measurements for each boring are summarized in Table 1. A copy of the field notes and soil boring logs are provided in Appendix D.

ANALYTICAL RESULTS

The analytical results of the soil and groundwater samples collected from the various areas of the subject properties did indicate concentrations above soil and groundwater cleanup target levels (SCTLs and GCTLs) as outlined in Chapter 62-777 of the Florida Administrative Code (F.A.C.).

No VOCs (Method 8260) or PCBs above detectable levels were observed in any of the samples submitted for analysis. TRPH was detected in one sample, SB-23 above the SCTL. All other samples were below detectable limits for TRPH. However, various PAH compounds were detected in multiple soil samples and in one groundwater sample. Three of these soil samples (SB-19, SB-21, and SB-23) exhibited PAH concentrations above SCTLs. Two of these soil samples also exceeded the residential direct exposure limit for Benzo(a)Pryene (BaP) Equivalent. The BaP Equivalent is an FDEP methodology that calculates a weighted average for seven specific PAHs. FDEP has established the residential direct exposure cleanup target level (CTL) at $0.1 \mathrm{mg} / \mathrm{kg}$ and the industrial direct exposure CTL at $0.7 \mathrm{mg} / \mathrm{kg}$. Because the future land uses for the subject properties

Mr. H. Reid Rivers
Gainesville Regional Utilities
June 23, 2011
Page 7
are undetermined, FDEP will require that the lower residential limit of 0.1 milligrams per
 indicated at least one PAH compound concentration above GCTLs. Multiple RCRA metals were detected in both soil and groundwater samples, with only two soil samples (SB-13 and SB-19) indicating exceedances.

The following is a summary of the SCTL and GCTL exceedances, along with recommendations for each area:

- SB-4: benzo(a)anthracene in groundwater (0.64 micrograms liter $[\mu \mathrm{g} / \mathrm{L}]$) at a concentration above the GCTL $(0.05 \mu \mathrm{~g} / \mathrm{L})$. This was the only contamination detected above regulatory limits on Parcel 1. This will require the installation of up to three permanent groundwater monitoring wells to complete the assessment of groundwater quality in this area.
- SB-13: arsenic in soil ($2.9 \mathrm{mg} / \mathrm{kg}$) at a concentration above the direct exposure SCTL ($2.1 \mathrm{mg} / \mathrm{kg}$). This was a shallow sample collected at 5 feet. This will require an additional deeper soil sample to be collected to complete the vertical assessment of the arsenic. Several additional shallow soil borings to the south may be necessary to determine if this contamination was concentrated at SB-13 (SB-14 to the north did not exhibit any exceedances).
- SB-19: BaP Equivalent in soil $(0.4 \mathrm{mg} / \mathrm{kg})$ at a concentration above the CTL ($0.1 \mathrm{mg} / \mathrm{kg}$). Arsenic was also measured at $3.9 \mathrm{mg} / \mathrm{kg}$, above the $2.1 \mathrm{mg} / \mathrm{kg}$ limit. These contaminants are often found in historical railroad corridors. The presence of both of these contaminants will require additional soil samples in the area to complete the vertical and horizontal definition.
- SB-21: BaP Equivalent ($1.0 \mathrm{mg} / \mathrm{kg}$), benzo(a)anthracene ($1.5 \mathrm{mg} / \mathrm{kg}$) and dibenzo-(a, h) anthracene $(0.83 \mathrm{mg} / \mathrm{kg})$ were detected above soil CTLs $(0.1 \mathrm{mg} / \mathrm{kg}, 0.8 \mathrm{mg} / \mathrm{kg}$ and $0.7 \mathrm{mg} / \mathrm{kg}$, respectively). Benzo(a)anthracene and dibenzo(a, h)anthracene are two of the compounds in the BaP calculation, so the BaP exceedance is the overriding factor. Again, additional soil samples will be required to complete the assessment at this sample location.
- SB-23: TRPH in soil ($520 \mathrm{mg} / \mathrm{kg}$) at a concentration above the CTL $(340 \mathrm{mg} / \mathrm{kg})$. This will require additional soil samples in the area and a groundwater sample to complete the vertical and horizontal assessment of this area.

The soil analytical results are summarized in Tables 2 through 5, and groundwater analytical results are summarized in Tables 6 through 8. Figures 3, 4, and 5 present soil
and groundwater results exceedances. A copy of complete laboratory reports are included in Appendix E. Copies of the FDEP BaP Conversion tables used to calculate the BaP equivalent for each sample that indicated detectable concentrations of BaP compounds are presented in Appendix F.

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS

Based on a review of available Sanborn Fire Insurance Maps and previously reviewed historical aerial photographs and topographical maps, a data gap was encountered from the time of first development until 1922. Site uses can only documented back to 1922, when the properties contained multiple residential dwellings. Based on the property uses in 1922, it does not appear that the data gap represents an environmental concern. However, the 1928 map did indicate that a gasoline tank had been located near a storage building located adjacent to $5^{\text {th }}$ Terrace (south Dell Street). ECT would recommend that a soil boring, for the collection of a soil sample and possible groundwater sample, be installed in the approximate area of this former gasoline tank.

A second gasoline tank was noted on the 1965 map, adjacent to the Operations Center warehouse. During the recent soil and groundwater sampling activities, SB-10 was installed in proximity to the estimated location of this former gasoline tank. The soil and groundwater samples collected in this sample location did not exhibit contamination concentrations above CTLs. Therefore, no additional assessment is recommended in this area.

The Lead Testing Survey performed did document building components with detectable lead concentrations. A total of 20 sample locations indicated building components with concentrations above the EPA limit of $1.0 \mathrm{mg} / \mathrm{cm}^{2}$. ECT would recommend that the results of this survey be provided to any contractor that will be performing construction activities that could disturb any building component that exhibited a detectable concentration of lead.

The ACM Survey did document building components with greater than 1 percent asbestos. Five of the sample submitted indicated analytical results ranging from 3 to 50 percent asbestos. ECT recommends that an accredited asbestos abatement contractor be consulted prior to performing construction activities that could disturb any building component that was determined to be an asbestos containing material or regulated asbestos containing material.

The analytical results of the soil and groundwater sampling performed on Parcels 1 and 2 indicated five sampling locations that will require additional assessment activities. ECT recommends the installation of three permanent groundwater monitoring wells in the vicinity of SB-4, located along the west property boundary on Parcel 1, to provide additional groundwater quality data in this area. In the area of SB-13, we would recommend the installation of three additional soil borings, with soil samples collected in

Mr. H. Reid Rivers

Gainesville Regional Utilities
June 23, 2011
Page 9
each boring for the analysis of arsenic. With respect to the BaP and arsenic exceedances encountered at SB-19 and SB-21, ECT would recommend collecting additional soil samples at both locations, at depths of $0.5,1.0,1.5,2.0$, and 5.0 feet, to determine the final depth of the contamination. We would also recommend installing additional soil borings to the west and east sides of SB-19, and to the north and south of SB-21 to verify that the BaP and arsenic contamination does not extend horizontally. Based on the PAH and TRPH exceedances exhibited in the soil sample from SB-23, ECT would recommend installing three additional soil boring around SB-23 to assist in completing the horizontal delineation of these compounds. Because the soil sample collected in SB-23 was just above the groundwater table, a groundwater sample should also be collected in at least one of the new soil boring locations to determine the groundwater quality in this area.

If you have any questions please contact either of us at 352.332 .0444 .
Sincerely,

ENVIRONMENTAL CONSULTING \& TECHNOLOGY, INC.

Stephanie H. Emerson
Senior Associate Engineer

Perry Hubbard, P.G. Principal Scientist

SHE/saw

APPENDICES

APPENDIX A - SANBORN MAPS
APPENDIX B - LEAD TESTING SURVEY REPORT
APPENDIX C - ACM SURVEY REPORT
APPENDIX D - FIELD NOTES AND BORING LOGS
APPENDIX E - LABORATORY ANALYTICAL REPORT
APPENDIX F - BENZO(A)PYRENE CONVERSION TABLES

FIGURES

Environmental Consuting \& Technology, inc.

S.E. 4th AVE.

S.E. 5th AVE.

S.E. 4th AVE.

S.E. 5th AVE.
\qquad $x \underbrace{}_{x}$

LEGEND

\oplus SOIL BORING
TEMPORARY GROUNDWATER SAMPLE
SOIL BORING SUFFIX DENOTATION:
(PK1) PARCEL 1 PARKING AREAS
(OC) OPERATIONS CENTER
(G) GENERATOR
(PCB) PCB BUILDING
(AST) AST AREA
(PK2) PARCEL 2 PARKING AREAS (RR) RALLROAD CORRIDOR
S.E. 4th AVE.

ANALYTICAL LEGEND

S.E. 5th AVE.

S.E. 5th AVE.

FIGURE 5.
GROUNDWATER EXCEEDANCE SUMMARY
APRIL 13 AND 14, 2011
Sources: GRU, 2011; ECT, 2011.

TABLES

TABLE 1. SOIL OVA DATA SUMMARY

Facility Name: GRU Facilities Properties (Parcel 1 \& Parcel 2)
ppm = parts per million
ft bls = feet below hand surface

SAMPLE				OVA Screening Results			Laboratory Analyses			
$\begin{aligned} & \text { Boring } \\ & \text { Number } \end{aligned}$	Date	$\begin{gathered} \hline \text { Depth } \\ \text { to } \\ \text { Water* } \end{gathered}$	Sample Interval (ft bls)	Total Reading (ppm)	Carbon Filtered (ppm)		Total voas (ppm)	Total PAHs (ppm)	$\begin{aligned} & \text { TRPH } \\ & (\mathrm{ppm}) \end{aligned}$	COMMENTS
SB-1	04/13/11	9	2	0	--	0				
			4	0	---	0				
			6	0	--	0	0.0007 U	0.01 U	7.41	Sample Collected
			8	0	--	0				
			10	0	--	0				
SB-2	04/13/11	8	2	0	--	0				
			4	0	--	0				
			6	0	\cdots	0				
			8	0	--	0	0.0007 U	0.01 U	3.5 U	Sample Collected
			10	0	..	0				
SB-3	04/13/11	9	2	0	--	0				
			4	0	--	0				
			6	0	--	0				
			8	1	--	1	0.007 U	0.029	3.3 U	Sample Collected
			10	1	--	1				
SB-4	04/13/11		2	53	30	23				
			4	41	29	12				
			6	2,544	1,146	1,398	0.0008 U	0.01 U	3.8 U	Sample Collected
			8	252	106	146				
			10	32	15	17				
			12	18	10	8				
			14	13	6	7				
SB-5	04/13/11		2	143	48	95				
			4	196	78	118				
			6	75	51	24				
			8	1,546	568	978	0.0007 U	0.32	11	Sample Collected
			10	1,888	608	1,280				
SB-6	04/13/11		2	5	0	5				
			4	47	15	32				
			6	3	0	3				
			8	134	28	106	0.001 U	0.81	28	Sample Collected
			10	32	13	19				
SB-7	04/13/11		2	0	\cdots	0				
			4	0	--	0				
			6	0	--	0				
			8	0	--	0	0.0006 U	0.24	3.6 U	Sample Collected
			10	0	--	0				
			12	25	13	12				
			14	3	0	3				
SB-8	04/13/11		2	0	--	0				
			4	0	--	0				
			6	0	--	0				
			8	0	--	0	0.0007 U	0.45	11	Sample Collected
			10	0	--	0				

TABLE 1. SOIL OVA DATA SUMMARY
Facility Name: GRU Facilities Properties (Parcel $1 \&$ Parcel 2)
ppm = parts per milion
ft bls = feet below land surface

SAMPLE				OVA Screening Results			Laboratory Analyses			
Boring Number	Date	$\begin{gathered} \text { Depth } \\ \text { to } \\ \text { Water } \end{gathered}$	Sample Interval (ft bls)	Total Reading (ppm)	Carbon Filtered (ppm)	Net Reading (ppm)	$\begin{aligned} & \text { Total } \\ & \text { VoAs } \\ & (\mathrm{ppm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { PAHs } \\ & (\mathrm{ppm}) \end{aligned}$	$\begin{aligned} & \text { TRPH } \\ & (\mathrm{ppm}) \end{aligned}$	COMMENTS
SB-9	04/14/11		2	0	\cdots	0				
			4	0	--	0				
			6	0	--	0				
			8	0	--	0	0.0007 U	0.01 U	3.4 U	Sample Collected
			10	0	--	0				
SB-10	04/14/11		2	0	--	0				
			4	0	--	0				
			6	0	--	0	0.0007 U	0.01 U	3.5 U	Sample Collected
			8	0	--	0				
			10	0	--	0				
			12	0	--	0				
			14	0	--	0				
SB-11	04/14/11		2	0	--	0				
			4	0	--	0				
			6	0	--	0				
			8	2	0	2	0.0007 U	0.01 U	3.5 U	Sample Collected
			10	2	0	2				
SB-12	04/14/11		2	0	--	0				
			4	0	--	0				
			6	0	--	0				
			8	0	--	0				
			10	0	---	0	0.0007 U	0.01 U	3.5 U	Sample Collected
SB-13	04/13/11		1	0	--	0				
			2	0	--	0				
			3	0	--	0				
			4	0	--	0				
			5	0	--	0	0.0007 U	0.01 U	3.5 U	Sample Collected
SB-14	04/13/11		1	0	--	0				
			2	0	--	0				
			3	0	--	0	0.0006 U	0.01 U	3.2 U	Sample Collected
			4	0	--	0				
			5	0	--	0				
SB-15	04/13/11		2	0	--	0				
			4	0	--	0				
			6	0	--	0	0.0007 U	0.01 U	3.60	Sample Collected
			8	0	\cdots	0				
			10	0	--	0				
SB-16	04/13/11		2	0	\cdots	0				
			4	0	\cdots	0				
			6	0	--	0	0.0007 U	0.06	8.81	Sample Collected
			8	0	\cdots	0				
			10	0	--	0				

TABLE 1. SOIL OVA DATA SUMMARY

Facility Name: GRU Facilities Properties (Parcel 1 \& Parcel 2)
ppm $=$ patts per million
f bls $=$ feet below land surface

TABLE 1. SOIL OVA DATA SUMMARY

Facility Name: GRU Facilities Properties (Parcel $1 \&$ Parcel 2)
$\mathrm{ppm}=$ parts per mithon
fols = feet below land surface

SAMPLE				OVA Screening Results			Laboratory Analyses			
Boring Number	Date	Depth to Water*		Total Reading (ppm)	Carbon Filtered (ppm)		Total VOAs (ppm)	$\begin{aligned} & \text { Total } \\ & \text { PAHs } \\ & (\mathrm{ppm}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TRPH } \\ & (\mathrm{ppm}) \end{aligned}$	COMMENTS
SB-28	04/14/11		2	0	--	0				
			4	0	--	0				
			6	0	--	0				
			8	3	0	3	0.0007 U	0.01 U	3.3 U	Sample Collected
			10	3	0	3				
SB-23	$04 / 14 / 1$		2	0	--	0				
			4	0	\cdots	0				
			6	0	\cdots	0				
			8	0	--	0	0.0007 U	0.01 U	3.5 U	Sample Collected
			10	0	--	0				

TABLE 2: VCO/TRPH SOIL ANALYTICAL SUMMARY
Facility Name: \quad GRU Facilities Properties (Parcell 1 \& Parcel 2)
BDI = telow detecion limits
Anatyical Results $=\mathrm{mg} / \mathrm{kg} \quad \mathrm{NS}=$ not sampled

Lecation	Date	Depth (f)	Net Organic Vapor (ppm)	Bearene	Teluene	Ethy1 Benzene	Total Xylenes	mtbe	Carbon Tetrachloride	Isopropylbenzene	Methylene Chloride	Trichloroethene	Viny! Chloride	TRPH
FDEP Direct Exposure				1.2	7,500	1,500	130	4,400	0.5	220	17	6.4	0.2	460
FDEP Commercial Exposure				1.7	60,000	9,200	700	24,000	1	1,200	26	9	1	2,700
FDEP Leachability				0.007	0.5	0.6	0.2	0.09	0.04	0.2	0.02	0.03	0.007	340
SB-1	6-8	04/13/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	7.41
SB-2	6.8	04/13/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.5 U
SB-3	6.8	04/13/11	1	0.0005 U	0.0007 U	0.0007 U	0.0004 U	0.0005 U	0.0004 U	0.0005 U	0.0008 U	0.0004 U	0.0007 U	3.3 U
SB-4	4-6	04/13/11	1,398	0.0006 U	0.0008 U	0.0008 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0009 U	0.0005 U	0.0008 U	3.8 U
SB-5	6-8	04/13/11	978	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	11
SB-6	6-8	04/13/11	106	0.0008 U	0.001 U	0.001 U	0.0006 U	0.0008 U	0.0006 U	0.0008 U	0.0011 U	0.0006 U	0.0010 U	28
SB-7	6-8	04/13/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.6 U
SB-8	6-8	04/13/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0009 U	0.0005 U	0.0005 U	11
SB-9	6-8	04/14/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.4 U
SB-10	4-6	04/14/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.5 U
SB-11	6-8	04/14/11	2	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.5 U
SB-12	8-10	04/14/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.5 U
SB-13	4-5	04/13/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0,0008 U	0.0005 U	0.0007 U	3.5 U
SB-14	2-3	04/13/11	0	0.0005 U	0.0006 U	0.0006 U	0.0004 U	0.0005 U	0.0004 U	0.0005 U	0.0007 U	0.0004 U	0.0006 U	3.2 U
SB-15	4-6	04/13/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.6 U
SB-16	4-6	04/14/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	8.81
SB-17	2-4	04/13/11	0	0.0005 U	0.0007 U	0.0007 U	0.0004 U	0.0006 U	0.0004 U	0.0005 U	0.0008 U	$0.0004 \mathrm{U}^{\text {d }}$	0.0007 U	3.3 U
SB-22	8-10	04/14/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.5 U
SB-23	6-8	04/14/11	5	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	520 L
SB-24	4-6	04/14/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0009 U	0.0005 U	0.0008 U	3.7 U

TABLE 2: VCO/TRPH SOIL ANALYTICAL SUMMARY
Facility Name: GRU Facilities Properties (Parcel 1 \& Parcel 2)
BDL w below detection limits
Analytical Resulss $=\mathrm{mg} / \mathrm{kg} \quad \mathrm{NS}$ a not sampled

Sample		Deph (fi)	Net Organie Vapor (ppin)	Benzene	Toluene	Ethyl Beazene	Total Xylenes	mtbe	Carbon Tetrachloride	Isopropylbenzene	Metlylene Chloride	Trichloreethene	Vinyl Choride	TRPH
Lecation	Date													
SB-25	4-6	04/14/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.5 U
SB-26	6-8	04/14/11	4	0.0005 U	0.0007 U	0.0007 U	0.0004 U	0.0005 U	0.0004 U	0.0005 U	0.0008 U	0.0004 U	0.0007 U	33 U
SB-27	6-8	04/14/11	5	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.5 U
SB-28	6-8	04/14/11	3	0.0005 U	0.0007 U	0.0007 U	0.0004 U	0.0005 U	0.0004 U	0.0005 U	0.0008 U	0.0004 U	0.0007 U	3.30
SB-29	6-8	04/14/11	0	0.0006 U	0.0007 U	0.0007 U	0.0005 U	0.0006 U	0.0005 U	0.0006 U	0.0008 U	0.0005 U	0.0007 U	3.50

Notes: U - The qualifier denotes that the analyte was not detected, with the value preceeding the " U " being the Method Detection Limit (MDL).
1- This quailifer denotes that the reported value is between the MDL and the Practical Quantitation Limit (PQL)
L - This qualifier denotes that the value reported is above the calibration curve
Bold and highligth values indicated values above the regulatory limits.

TABLE 3: SOIL PAH ANALYTICAL SUMMARY

Facility Name: GRU Facilities Properties (Parcel 1 and Parcel 2)

Sample																						
Location	Depth (f)	Date	Net Organic Vapor (ppm)		1-Methyl naphtha-								$\frac{0}{6}$									
SCTLs				55	200	210	1,800	2,400	2,600	2,200	21,000	3,200	2,400	\#	\#	\#	\#	0.1	\#	2,500	\#	0.1
Leachability				1.2	3.1	8.5	27	2.1	160	250	2,500	1,200	880	0.8	77	2.4	24	8	0.7	32,000	6.6	-
SB-1	6-8	04/13/11	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
SB-2	6-8	04/13/11	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.004 U	0.004 U	0.002 U	0.004 U	0.002 U	0.004 U	NA				
SB-3	6-8	04/13/11	1	0.007 U	0.007 U	0.004 U	0.004 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.01	0.002 U	0.002 U	0.01	0.002 U	0.009	0.002 U	0.003 U	0.0
SB-4	4.6	04/13/11	1398	0.008 U	0.008 U	0.005 U	0.005 U	0.01 U	0.003 U	0.004 U	0.003 U	0.004 U	0.004 U	0.003 U	0.004 U	0.003 U	0.004 U	NA				
SB-5	6-8	04/13/11	978	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.05	0.02	0.01	0.11	0.01	0.08	0.02	0.02	0.002 U	0.004 U	0.0
SB-6	6.8	04/13/11	106	0.01 U	0.46	0.006 U	0.006 U	0.01 U	0.14	0.005 U	0.003 U	0.05	0.005 U	0.11	0.02	0.03	0.003 U	0.003 U	0.005 U	0.003 U	0.005 U	0.0
S8-7	6.8	04/13/11	0	0.007 U	0.18	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.004 U	0.004 U	0.002 U	0.002 U	0.06	0.002 U	0.002 U	0.004 U	0.002 U	0.004 U	0.0
SB-8	6.8	04/13/11	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.05	0.004 U	0.40 L	0.002 U	0.002 U	0.002 U	0.002 U	0.004 U	0.002 U	0.004 U	0.0
SB-9	6.8	04/14/11	0	0.006 U	0.006 U	0.004 U	0.004 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
SB-10	4.6	04/14/11	0	0.006 U	0.006 U	0.004 U	0.004 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
SB-11	6.8	04/14/11	2	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.004 U	0.004 U	0.002 U	0.004 U	0.002 U	0.004 U	NA				
S8-12	$8 \cdot 10$	04/14/11	0	0.006 U	0.006 U	0.004 U	0.004 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
SB-13	4.5	04/13/11	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.004 U	0.004 U	0.002 U	0.004 U	0.002 U	0.004 U	NA				
SB-14	$2 \cdot 3$	04/13/11	0	0.006 U	0.006 U	0.004 U	0.004 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
SB-15	4.6	04/13/11	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.004 U	0.004 U	0.002 U	0.004 U	0.002 U	0.004 U	NA				
S8-16	0.5	04/13/11	NS	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
	4.6	04/13/11	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.004 U	0.004 U	0.06	0.002 U	0.002 U	0.002 U	0.002 U	0.004 U	0.002 U	0.004 U	0.0
SB-17	0.5	04/13/11	NS	0.007 U	0.007 U	0.004 U	0.004 U	0.09	0.002 U	0.003 U	0.002 U	0.07	0.05	0.02	0.002 U	0.16	0.03	0.10	0.003 U	0.002 U	0.003 U	0.1
	2.4	04/13/11	0	0.007 U	0.007 U	0.004 U	0.004 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
S8-18	0.5	04/14/11	NS	0.008 U	0.008 U	0.005 U	0.005 U	0.01 U	0.003 U	0.004 U	0.003 U	0.23 L	0.09	0.05	0.06	0.05	0.04	0.04	0.03	0.05	0.04	0.1
SB-19	0.5	04/14/11	NS	0.006 U	0.006 U	0.12	0.004 U	0.53	0.002 U	0.25	0.002 U	0.46 L	0.23 L	0.14	0.25 L	0.20 L	0.10 L	0.15 L	0.16	0.18 L	0.11	0.4
SB-20	1.2	04/14/11	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
SB-21	0.5	04/14/11	NS	0.15	0.22	1.1	0.006 U	0.88	0.003 U	1.8	0.33	1.11	0.004 U	1.5L	0.003 U	0.43 L	0.003 U	0.003 U	0.83 L	1.8 L	0.004 U	1.0

TABLE 3: SOIL PAH ANALYTICAL SUMMARY

Facility Name:		GRU Facilities Properties (Parcel 1 and Parcel 2)															Analytical Results $=\mathrm{mg} / \mathrm{kg}$ Not Reported = NR			Not Applicable $=N A$ Not Samplen $=$ NS		
Sample																						
Location	Depth (ft)	Date	Net Organic Vapor (ppm)		Methyl naphtha-								$\stackrel{0}{5}$		$\begin{aligned} & \text { O} \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$							
SCTLS				55	200	210	1,800	2,400	2,600	2,200	21,000	3,200	2,400	\#	\#	\#	\#	0.1	\#	2,500	\#	0.1
Leachability				1.2	3.1	8.5	27	2.1	160	250	2,500	1,200	880	0.8	77	2.4	24	8	0.7	32,000	6.6	-
S8-22	8-10	04/14/11	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
SB-23	6-8	04/14/11	5	0.007 U	0.86	0.005 U	0.11	0.21	0.02	0.004 U	0.002 U	0.004 U	0.004 U	2.8 L	0.002 U	0.53 L	0.35 L	0.002 U	0.004 U	0.002 U	0.004 U	0.3
S8-24	4-6	04/4/411	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.004 U	0.004 U	0.21 L	0.002 U	0.002 U	0.002 U	0.002 U	0.004 U	0.002 U	0.004 U	0.0
SB-25	4-6	04/14/11	0	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
SB-26	6-8	04/14/11	4	0.007 U	0.007 U	0.004 U	0.004 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
SB-27	6.8	04/14/11	5	0.007 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.004 U	0.002 U	0.004 U	0.004 U	0.002 U	0.004 U	0.002 U	0.004 U	NA				
S8-28	6-8	04/14/11	3	0.007 U	0.007 U	0.004 U	0.004 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				
S8-29	6-8	04/14/11	0	0.907 U	0.007 U	0.005 U	0.005 U	0.01 U	0.002 U	0.003 U	0.002 U	0.003 U	0.003 U	0.002 U	0.003 U	0.002 U	0.003 U	NA				

Notes: U - This qualifier denotes that the analyte was not detected, with the value preceding the " U " being the Method Detection Limit (MDL)

- This qualifier denotes that the reported value is between the MDL and the Practical Quantitation Limit (PQL)
L. This qualifier denotes the value reported is above the calibration curve

TABLE 4: RCRA METALS SOIL ANALYTICAL SUMMARY
Facility Name: GRU Facilities Properties
Not Sampled $=$ NS
Parcel 1 and Parcel 2

Sample			Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Location	Depth	Date								
Cleanup Target Levels			2.1	120	82	210	400	3	440	410
Leachability			*	130,000	1,700	470	1,400	17	11,000	8,200
SB-1	6-8	04/13/11	0.271	5.0 I	0.041 U	5.3	9.1	0.0211	0.16 U	0.041 U
SB-2	$6-8$	04/13/11	0.69	39.0	0.051 U	4.2	7.3	0.068 I	0.38 I	0.51 U
SB-3	$6-8$	04/13/11	0.67	32.4	0.041 U	5.5	9.3	0.0090 U	0.17 U	0.041 U
SB-4	4-6	04/13/11	0.080 U	4.21	0.040 U	0.81	1.5	0.0095 U	0.16 U	0.040 U
SB-5	6-8	04/13/11	0.49	22.3	0.141	4.1	26.4	0.077 I	0.19 U	0.046 U
SB-6	$6-8$	04/13/11	0.95	31.1	0.056 U	3.8	12.0	0.13	0.991	0.056 U
SB-7	6-8	04/13/11	0.55	27.8	0.0701	4.4	28.4	0.21	0.311	0.053 U
SB-8	6-8	04/13/11	0.11 U	1.81	0.054 U	0.261	0.501	0.012 U	0.22 U	0.054 U
SB-9	6-8	04/14/11	0.241	6.01	0.043 U	5.8	8.1	0.13	0.17 U	0.043 U
SB-10	$4 \cdot 6$	04/14/11	0.241	5.31	0.044 U	4.6	9.0	0.40	0.17 U	0.044 U
SB-11	6-8	04/14/11	0.171	2.91	0.040 U	9.2	6.3	0.15	0.16 U	0.040 U
SB-12	8-10	04/14/11	0.82	23.3	0.049 U	7.9	10.0	0.24	0.20 U	0.049 U
SB-13	4-5	04/13/11	2.9	6.91	0.042 U	8.9	7.0	0.0093 U	0.531	0.042 U
SB-14	2-3	04/13/11	0.092 U	1.41	0.046 U	0.49	0.49 I	0.0090 U	0.18 U	0.046 U
SB-15	4-6	04/13/11	0.161	4.41	0.046 U	2.3	3.0	0.0241	0.18 U	0.046 U
SB-16	0.5	04/13/11	0.61	10.5	0.048 U	3.0	4.9	0.0311	0.19 U	0.048 U
	4-6	04/13/11	0.58	25.4	0.053 U	3.9	15.7	0.12	0.21 U	0.053 U
SB-17	0.5	04/13/11	0.79	23.6	0.131	5.9	29.1	0.11	0.64 U	0.040 U
	2-4	04/13/11	0.73	11.4	0.050 U	5.7	3.5	0.0090 U	0.20 U	0.050 U

TABLE 4: RCRA METALS SOIL ANALYTICAL SUMMARY

Facility Name: GRU Facilities Properties
Parcel 1 and Parcel 2

Sample			Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Location	Depth	Date								
Cleanup Target Levels			2.1	120	82	210	400	3	440	410
SB-18	0.5	04/14/11	1.6	35.4	0.0791	4.7	48.5	0.11	0.291	0.053 U
SB-19	0.5	04/14/11	3.9	20.8	1.8	22.0	36.9	0.093 I	1.81	0.11 U
SB-20	1-2	04/14/11	0.61	9.6	0.036 U	5.3	4.1	0.0171	0.161	0.036 U
SB-2I	0.5	04/14/11	1.61	102	0.50 U	26.0	6.9	0.0089 U	2.0 U	0.50 U
SB-22	8-10	04/14/11	0.97	39.2	0.044 U	8.4	7.1	0.0781	0.18 U	0.044 U
SB-23	6-8	04/14/11	0.261	8.11	0.056 U	3.4	9.0	0.0791	0.381	0.056 U
SB-24	4-6	04/14/11	0.481	9.21	0.060 U	11.6	14.0	0.50	0.24 U	0.060 U
SB-25	4-6	04/14/11	0.64	6.91	0.045 U	13.3	13.4	0.85	0.201	0.045 U
SB-26	$6-8$	04/14/11	0.48	11.9	0.042 U	7.0	21.4	0.24	0.17 U	0.042 U
SB-27	6-8	04/14/11	0.141	1.81	0.041 U	8.3	3.9	0.13	0.16 U	0.041 U
SB-28	6-8	04/14/11	0.191	3.31	0.038 U	6.2	7.7	0.12	0.15 U	0.038 U
SB-29	6-8	04/14/11	0.15 I	3.81	0.046 U	8.0	12.8	0.30	0.18 U	0.046 U

Notes: * Denotes that the leachability must be determined using the SPLP method for site specific evaluation.
U-This quailifier denotes that the analyte was not detected, with the value preceding the "U" being the Method Detection Limit (MDL)
I- This quailifier denotes that the reported value is between the MDL and Practical Quantitation Limit (PQL)

TABLE 5: PCB SOIL ANALYTICAL SUMMARY
Facility Name: GRU Facilities Properties
Parcel 1 and Parcel 2
Not Sampled = NS
Not Analyzed = NA
Analytical Results $=u g / \mathrm{kg}$

Sample							Aroclor 1016	Aroclor $\mathbf{1 2 2 1}$	Aroclor $\mathbf{1 2 3 2}$
Location	Depth	Date		Aroclor $\mathbf{1 2 4 2}$	Aroclor $\mathbf{1 2 5 4}$	Aroclor $\mathbf{1 2 6 0}$			
Cleanup Target Levels									
SB-22	$8-10$	$04 / 14 / 11$	7.8 U	9.7 U	9.7 U	7.8 U	7.8 U	7.8 U	7.8 U
SB-23	$6-8$	$04 / 14 / 11$	7.8 U	9.8 U	9.8 U	7.8 U	7.8 U	7.8 U	7.8 U
SB-24	$4-6$	$04 / 14 / 11$	8.0 U	10 U	10 U	8.0 U	8.0 U	8.0 U	8.0 U
SB-25	$4-6$	$04 / 14 / 11$	7.9 U	9.9 U	9.9 U	7.9 U	7.9 U	7.9 U	7.9 U
SB-26	$6-8$	$04 / 14 / 11$	7.4 U	9.3 U	9.3 U	7.4 U	7.4 U	7.4 U	7.4 U
SB-27	$6-8$	$04 / 14 / 11$	7.7 U	9.6 U	9.6 U	7.7 U	7.7 U	7.7 U	7.7 U
SB-28	$6-8$	$04 / 14 / 11$	7.5 U	9.4 U	9.4 U	7.5 U	7.5 U	7.5 U	7.5 U
SB-29	$6-8$	$04 / 14 / 11$	7.7 U	9.6 U	9.6 U	7.7 U	7.7 U	7.7 U	7.7 U

Notes: U-This quailifier denotes that the analyte was not detected, with the value preceding the " U " being the Method Detection Limit (MDL)

TABLE 6: VOC/TRPH GROUND WATER ANALYTICAL SUMMARY

Facility Name: GRU Facilities Properties
Parcel 1 \& Parcel 2

Analytical Results $=u g / L$
Not Sampled = NS

Sample		Benzene	Toluene	Ethyl Benzene	Total Xylenes	Total VOA	MTBE	Carbon Tetrachloride	Isopropylbenzene	Methylene Chloride	Trichlorocthene	Vinyl Chloride	TRPH
Location	Date												
Cleanup Targel Levels		1	40.	30	20	NA	50	30	1	2,7	3	1	5.000
Natural Attenuation Levels		100	400	300	200	NA	500.	-	\square	-	$\underline{4}$	-	50,000
SB-4	04/13/11	0.2 U	0.2 U	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.5 U	0.4 U	0.30	03 U	200 U
SB-7	04/13/11	0.2 U	0.2 U	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.5 U	0.4 U	0.30	0.30	200 U
SB-10	04/14/11	0.2 U	0.2 U	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.5 U	0.4 U	0.3 U	030	200 U
SB-17	04/13/11	0.2 U	0.2 U	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.5 U	0.4 U	0.34	0.3 U	200 U
SB-24	04/14/11	0.2 U	0.2 U	0.3 U	0.3 U	0.3 U	0.2 U	0.3 U	0.5 U	0.4 U	0.3 U	03 U	200 U

TABLE 7：GROUNDWATER PAH ANALYTICAL SUMMARY

Facility Name：GRU Facilities Properties（Parcel 1 and Parcel 2）

Analytical Results $=\mu \mathrm{g} /$
Not Applicable $=N A$
Not Sampled $=N S$

Sample																			
Location	Date			2－Methyl naphtha－lene				$\begin{aligned} & \text { L } \\ & \text { E } \\ & \text { E } \\ & \text { E } \\ & \frac{E}{2} \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { E } \\ & \text { E } \\ & \text { E } \end{aligned}$		$\frac{y}{2}$		药	亲	年			嶪	
GCTLs		14	28	28	210	20	280	210	2，100	280	210	0.05	4.8	0.05	0.5	0.2	0.005	2，500	0.05
SB－4	04／13／11	0.15 U	0.71 U	0.63 U	0.58 U	0.68 U	0.17 U	0.09 U	0.06 U	0.22 U	0.20 U	0.64	0.16 U	0.10 U	0.08 U	0.12 U	0.10 U	0.18 U	0.15 U
SB－7	04／13／11	0.15 U	0.71 U	0.63 U	0.58 U	0.68 U	0.17 U	0.09 U	0.06 U	0.22 U	0.20 U	0.12 U	0.16 U	0.10 U	0.08 U	0.12 U	0.10 U	0.18 U	0.15 U
SB－10	04／14／11	0.15 U	0.71 U	0.63 U	0.58 U	0.68 U	0.17 U	0.09 U	0.06 U	0.22 U	0.20 U	0.12 U	0.16 U	0.10 U	0.08 U	0.12 U	0.10 U	0.18 U	0.15 U
SB－17	04／13／11	0.15 U	0.71 U	0.63 U	0.58 U	0.68 U	0.17 U	0.09 U	0.06 U	0.22 U	0.20 U	0.12 U	0.16 U	0.10 U	0.08 U	0.12 U	0.10 U	0.18 U	0.15 U
SB－24	04／14／11	0.15 U	0.71 U	0.63 U	0.58 U	0.68 U	0．17 U	0.09 U	0.06 U	0.22 U	0.20 U	0.12 U	0.16 U	0.10 U	0.08 U	0.12 U	0.10 U	0.18 U	0.15 U

Notes：U－This qualifier denotes that the analyte was not detected，with the value preceding the＂U＂being the Method Detection Limit（MDL）

TABLE 8: RCRA METALS GROUNDWATER ANALYTICAL SUMMARY

Facility Name: GRU Facilities Properties
Parcel 1 and Parcel 2

Not Sampled $=$ NS
Not Analyzed =NA

Analytical Results $=\mathrm{ug} / \mathrm{L}$

Sample		Arsenic	Barium	Cadmium	Chromium	Lead	Mercury	Selenium	Silver
Location	Date								
Cleanup Target Levels	$\mathbf{1 0}$	$\mathbf{2 0 0 0}$	$\mathbf{5}$	$\mathbf{1 0 0}$	$\mathbf{1 5}$	$\mathbf{2}$	$\mathbf{5 0}$	$\mathbf{1 0 0}$	
SB-4	$04 / 13 / 11$	2.0 U	62.81	1.0 U	11.3	12.8	0.085 I	2.0 U	1.0 U
SB-7	$04 / 13 / 11$	2.0 U	17.41	1.0 U	4.31	1.01	0.050 U	3.41	1.0 U
SB-10	$04 / 14 / 11$	20 U	42.81	1.0 U	20.9	11.9	0.111	2.0 U	1.0 U
SB-17	$04 / 13 / 11$	2.0 U	19.41	1.0 U	43.2	5.2	0.33 I	2.0 U	1.0 U
SB-24	$04 / 14 / 11$	2.0 U	52.61	1.0 U	31.1	1.51	0.241	2.0 U	1.0 U

Notes: $\quad U$ - This quailifier denotes that the analyte was not detected, with the value preceding the " U " being the Method Detection Limit (MDL)
I- This quailifier denotes that the reported value is between the MDL and Practical Quantitation Limit (PQL)

APPENDIX A -

 SANBORN MAPSGRU Facilities Properties
555 SE 5th Avenue
Gainesville, FL 32601
Inquiry Number: 3067961.1
May 16, 2011

Certified Sanhorn® Map Report

Certified Sanborn® Map Report

Site Name:

GRU Facilities Properties
555 SE 5th Avenue
Gainesville, FL 32601
EDR Inquiry \# 3067961.1

Client Name:

ECT Env. Consulting \& Tech
3701 NW 98th Street
Gainesville, FL 32606
Contact: Stephanie Emerson

The complete Sanborn Library collection has been searched by EDR, and fire insurance maps covering the target property location provided by ECT Env. Consulting \& Tech Inc were identified for the years listed below. The cerified Sanborn Library search results in this report can be authenticated by visiting www.edrnet.com/sanborn and entering the certification number. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by Sanborn Library LLC, the copyright holder for the collection.

Certified Sanborn Results:

Site Name:	GRU Facilities Properties
Address:	555 SE 5th Avenue
City, State, Zip:	Gainesville, FL 32601
Cross Street:	
P.O. \#	NA
Project:	110059-0100
Certification \#	64AE-4170-8C6D

Sanborm ${ }^{2}$ Library search results Cerification \# 64AE-4170-8C6D

Maps Provided:

1965
1950
1928
1922

The Sanborn Library includes more than 1.2 million Sanborn fire insurance maps, which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

The Sanbom Library LLC Since $1866^{7 \pi}$

Limited Permission To Make Copies

ECT Env. Consulting \& Tech Inc (the client) is permitted to make up to THREE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

[^0]Sanborn Sheet Thumbnails
This Certified Sanborn Map Report is based upon the following Sanborn Fire Insurance map sheets.

1965 Source Sheets

Volume 1 , Sheet 27

1950 Source Sheets

Volume 1, Sheet 27

1928 Source Sheets

Volume 1, Sheet 27

1922 Source Sheets

Volume 1, Sheet 23

1928 Certified Sanborn Map

This Certified Sanborn Map combines the following sheets. led areas indicate map sheets within the collection.

4

1950 Certified Sanborn Map

1965 Certified Sanborn Map

[^1]led areas indicate map sheets within the collection.

0 Feet	150	300	60

APPENDIX B -
LEAD TESTING SURVEY REPORT

AMERICAN MANAGEMENT RESOURCES CORPORATION

P.O. Box 142653 • Gainesville, Florida 32614 • (352) 495-8266 • Fax (425) 732-9785

April 14, 2011
Ms,. Stephanie Emerson
ECT, Inc.
3701 NW 98 St.
Gainesville, FL 32606

RECEIVED
APR 202011

RE: Lead Testing GRU Facilities, Gainesville, Florida

Dear Ms. Emerson,
American Management Resources Corporation (AMRC) is providing you the report from our "Lead Testing" efforts conducted at the GRU Facilities, Gainesville, Florida on April 13, 2011.

The purpose of the task was to test building components for the presence of lead-based paint.
Areas Tested:
Warehouse Number 2
Warehouse Number 1
Operations Center
Water/Wastewater - Office, Building 528
Field Service Office - Behind Building 528
Field Service Technician Facility - Building 532

Lead-Based Paint was detected as highlighted on the attached table.

Testing was performed with a properly calibrated XRF instrument manufactured by RMD, Inc., Model LPA-1, Serial Number 3319 operated by a trained person certified by the EPA.

AMRC appreciates this chance to perform lead testing services for ECT. Please do not hesitate to contact us if you need further clarification of the information provided in this report.

Respectively Submitted,
Perry Brake (e-signature)
Perry Brake
Senior Consultant
EPA Certified Risk Assessor, FL-R-940-3

GRU Facilities, Gainesville, Florida Lead Testing

Lead Paint Was Detected $1.0 \mathrm{mg} / \mathrm{cm}^{2}$ and greater

Areas Tested as directed:
Warehouse Number 2
Warehouse Number 1
Operations Center
Water/Wastewater - Office, Building 528
Field Service Office - Behind Building 528
Field Service Technician Facility - Building 532

Testing Area	Sample Number	Component Tested	Test Result $\mathrm{mg} / \mathrm{cm}^{2}$
Calibrations	1,2,3	Calibration Standard	Acceptable
Warehouse Number 2Exterior	4	Wall - Concrete	-0.2
	5	Door-metal	-0.1
	6	Safety Post - metal	-0.1
	7	Ramp Frame - metal	1.7
	8	Ramp Hand Rail - metal	1.8
	9	Ramp wall/curb - concrete	1.0
	10	Breezway Structural Steel - metal	0.0
	11	Breezway Structural Steel -	-0.1
	12	Wall - concrete	0.3
	13	Wall - concrete	0.3
	14	Wall - concrete	0.1
	15	Door - metal	0.1
	16	Door Frame - metal	0.0
	17	Rolling Door Frame - metal	0.3

Warehouse Number 2 Interior	18	Structural Steel - metal	0.0
	19	Door Frame - metal	-0.1
	20	Door - Metal	0.0
	21	Structural Steel - metal	0.4
22	Stair Frame - metal	0.3	
23	Stair Frame Support - metal	0.2	
24	Ceiling Joists - metal	0.1	
25	Ceiling Joists - metal	0.1	
26	Safety Hand Rail - metal	1.0	

Warehouse Number I Exterior	27	Wall - concrete	-0.1
	28	Handrail - metal	-0.1
	29	Door Frame - metal - SE Corner Door	1.0
	30	Door-metal	0.0
	31	Structural Steel - metal - SE Corner	1.0
	32	Driveway Safety Post - metal	1.7
	33	Wall - concrete	0.1
	34	Structural Steel - Shade Cover - metal - East side	1.0
	35	Wall - concrete	0.2
	36	Sliding door - metal - East Side	-0.2
	37	Door Frame - metal	0.6
	38	Door - metal	-0.1
	39	Upper Wall - metal - East side	0.0
	40	Gutter - metal	0.0
	41	Window Framing - wood - East side	-0.2
	42	Gutter downspout - metal	0.0
	43	Wall - concrete	0.0
Warehouse Number 1 Interior	44	Wall - concrete	0.0
	45	Wall - wood	-0.2
	46	Wall - drywall	-0.1
	47	Safety stripes on Warehouse floor - concrete	>9.9
	48	Wall - concrete	0.1
	49	Structural Steel - metal	-0.1
	50	Door frame - metal - West side door with "not an exit" sign" over it	1.0
	51	Door - metal	0.3
	52	Wall - concrete	0.1

53	Stair Frame - metal - to north side overhead storage	2.4	
	54	Stair Tread - metal - to north side overhead storage	1.4
55	Stair Hand Rail - to north side overhead storage	1.0	
56	Ceiling - wood	-0.2	
57	Ceiling rafter - wood	0.0	
58	Ceiling joists - metal	0.3	
59	Safety Railing - metal - upstairs storage - NE	1.0	
60	Upper Wall - wood	0.2	
61	Upper wall - metal	0.1	
62	Door frame - metal	0.6	
63	Door - metal	0.1	
64	Window frame - wood	-0.1	
65	Wall - drywall	-0.1	
66	Wall - drywall	0.1	
67	Structural steel - metal	0.2	
68	Ceiling joist - metal	0.3	

Gas/Electrical Measurement Area Interior	69	Wall - drywall	-0.2
	70	Wall - drywall	-0.2
	71	Wall - drywall	-0.1
	72	Wall - drywall	0.0
	73	Wall - drywall	0.0
	74	Wall - drywall	-0.2
	75	Wall - drywall	-0.2
	76	Baseboard - wood	0.2
	77	Door Frame - wood	0.0
	78	Door - wood	0.1
	79	Door Frame - metal	0.0
	80	Door-metal	0.1
	81	Baseboard - wood	0.1
	82	Door frame - wood	0.0
	83	Door - wood	0.1
	84	Ceiling tile	-0.1
	85	Ceiling tile	0.3
	86	Door - wood	-0.3
	87	Wall - drywall/papered	-0.3
	88	Door frame - metal	-0.1
	89	Door - wood	-0.1
	90	Baseboard - wood	0.0
	91	Column - drywall	-0.1
	92	Wall - drywall	-0.1
	93	Window frame - wood	0.2
	94	Window frame - wood	0.1
Calibration	95	Calibration	Acceptable

Operations Center Interior	96	Wall - drywall/papered	-0.2
	97	Wall - drywall/papered	-0.1
	98	Wall - drywall/papered	0.0
	99	Ceiling tile	0.1
	100	Window sill - wood	0.1
	101	Baseboard - wood	0.1
	102	Door frame - wood	0.2
	103	Door - wood	-0.2
	104	Door frame - metal	0.6
	105	Door-metal	-0.1
	106	Support post - metal	0.1
	107	Wall - ceramic	-0.2
	108	Wall - drywall/papered	-0.1
	109	Ceiling Tile	-0.1
	110	Door frame - wood	0.2
	111	Door - wood	0.1
	112	Wall - drywall/papered	-0.1
	113	Baseboard - wood	0.0
	114	Door frame - wood	0.2
	115	Door - wood	0.0
	116	Ceiling tile	0.2

Operations Center Interior (con 't)	117	Wall - drywall/papered	0.1
	118	Wall - drywall/papered	0.2
	119	Wall - drywall/papered	0.0
	120	Wall - drywall/papered	-0.3
	121	Ceiling Tile	0.1
	122	Ceiling Tile	0.0
	123	Baseboard - wood	0.0
	124	Baseboard - wood	0.0
	125	Door - wood	-0.1
	126	Baseboard - wood	0.0
	127	Door frame - wood	-0.1
	128	Door - wood	0.0
	129	Wall - concrete	-0.4
	130	Wall - concrete	-0.2
	131	Ceiling Joists - metal	0.0
	132	Door frame - wood	0.0
	133	Door - wood	0.0
	134	Wall - concrete	-0.2
	135	Door frame - wood	0.0
	136	Door - wood	0.0
	137	Wall - drywall/papered	0.0
	138	Wall - drywall/papered	0.3
	139	Wall - drywall/papered	0.3
	140	Wall - drywall/papered	-0.2
	141	Baseboard - wood	-0.1
	142	Window Frame - wood	-0.2
	143	Walk-thru - wood	0.0

144	Door Frame - wood	0.1
145	Door - wood	0.1
146	Ceiling tile	0.2
147	Wall - ceramic	-0.3
148	Floor - Ceramic	-0.3
149	Wall - drywall	0.0
150	Wall-drywall	0.0
151	Door frame - wood	-0.1
152	Doo-wood	-0.3
153	Hand Rail - brass metal	0.0
154	Wall - drywall papered	-0.1
155	Wall - drywall papered	0.0
156	Wall - drywall papered	-0.1
157	Wall - drywall papered	-0.2
158	Baseboard - wood	0.0
159	Door frame - wood	0.0
160	Door - wood	-0.1
161	Wall - concrete	-0.1
162	Ceiling - plaster	-0.2
163	Door frame - wood	0.1
164	Door - wood	0.0
165	Door frame - wood	-0.1
166	Door - wood	-0.1
167	Closet door - wood	0.1
168	Wall - drywall papered	-0.2
169	Baseboard - wood	0.1
170	Wall - drywall	-0.1

	171	Wall-drywall	-0.1
	172	Wall-drywall	-0.2
	173	Wall-drywall	-0.2
	174	Ceiling tile	-0.1
	175	Baseboard - wood	0.2
	176	Door frame - wood	-0.1
	177	Door - wood	0.0
	178	Window frame - wood	0.0
	179	Wall - drywall papered	-0.4
	180	Wall - drywall papered	-0.2
	181	Baseboard - wood	0.2
	182	Ceiling tile	0.0
	183	Door frame - wood	0.0
	184	Door - wood	-0.1
	185	Wall - drywall	0.2
	186	Wall - drywall	0.2
	187	Baseboard - wood	0.2
	188	Baseboard - wood	0.4
	189	Door frame - wood	0.1
	190	Door - wood	0.4

Operations Center Exterior	191	Soffit - cementitious	-0.1
	192	Wall - upper, Concrete	0.0
	193	Gutter - metal	0.1
	194	Door frame - metal	0.2
	195	Door-metal	0.3
	196	Door Lintle - metal - Northwest Door	1.0
	197	Upper trim - metal	0.2
Calibrations	198	Door frame - metal	0.4
	199	Door-metal	0.0

Water/Wastewater Office, Bldg 528 Exterior	203	Soffit	0.2
	204	Upper Trim - metal	-0.1
	205	Wall - concrete	-0.1
	206	Window Lintle - metal	-0.1
	207	Door frame - metal	0.5
2208	Door - metal	0.1	
209	Door lintle - metal	0.0	
210	Wall - concrete	0.1	
2211	Wall - concrete	0.2	
212	Window Sill - concrete	-0.2	
213	Door frame - metal	0.0	
2214	Door - metal	0.3	
	Wall - concrete	-0.1	

Water/Wastewater Office, Bldg 528 Interior	216	Wall - drywall	-0.2
	217	Wall - drywall	-0.2
	218	Wall - drywall	-0.3
	219	Wall - drywall	0.1
	220	Wall - drywall	0.1
	221	Wall - drywall	0.2
	222	Wall - drywall	0.0
	223	Wall - drywall	0.0
	224	Wall - drywall	0.1
	225	Wall - drywall	0.1
	226	Wall - drywall	0.0
	227	Wall - drywall	-0.1
	228	Wall - drywall	-0.3

	229	Wall - drywall	-0.3
	230	Wall - drywall	-0.1
	231	Wall - drywall	-0.1
	232	Door Frame - metal	-0.1
	233	Door - wood	0.0
	234	Door frame - metal	-0.1
	235	Door - wood	0.2
	236	Door frame - metal	0.0
	237	Door - wood	0.1
	238	Door frame - metal - To Exterior SW Corner	1.0
	239	Door- metal	-0.2
	240	Door frame - wood	0.0
	241	Door - wood	-0.1
	242	Foyer Floor - ceramic	7.3
	243	Door frame - wood	-0.1
	244	Door - Wood	-0.2
	245	Door frame - metal	-0.1
	246	Door - wood	0.0
	247	Rear Foyer Floor - ceramic	6.2
	248	Men's Bathroom Floor - ceramic	6.5
	249	Ceiling-drywall	-0.3
Calibration	250	Calibration	Acceptable

Field Service Office Behind Building 528 Exterior	251	Wall - concrete	-0.1
	252	Wall - concrete	0.1
	253	Windowsill - concrete	0.2
	254	Door frame - metal	0.3
	255	Door - metal	-0.2
	256	Wall - concrete	-0.1
	257	Wall - concrete	-0.1
Field Service Office Behind Building 528 Interior	258	Garage door frame - Metal - small door	0.0
	259	Garage door - metal	0.0
	260	Garage door frame - metal	-0.1
	261	Ceiling joists - metal	0.0
	262	Wall - drywall	-0.2
	263	Wall - drywall	-0.1
	264	Door frame - metal	0.1
	265	Door metal	-0.1
	266	Ceiling tile	-0.1
	267	Main floor - ceramic	0.1
	268	Wall - drywall	-0.1
	269	Wall - drywall	0.0
	270	Wall - drywall	-0.2
	271	Wall - drywall	0.1
	272	Handrail - metal	0.1
	273	Floor - ceramic	0.0
	274	Door frame - metal	0.4
	275	Door - metal	0.0
	276	Floor - ceramic - bathroom	-0.4
	277	Wall - concrete - bathroom	0.0

	278	Wall - ceramic - bathroom	-0.2
	279	Wall - concrete	0.0
	280	Wall - concrete	-0.1
	281	Ceiling Tile	-0.2
Calibration	282	Calibration	Acceptable

Building 532 Field Service Technician Facility Exterior	283	Wall - concrete	-0.1
	284	Soffit - concrete	0.0
	285	Upper Trim - metal	-0.1
	286	Wall - concrete	0.1
	287	Window Slats - concrete	0.2
	288	Gutter - metal	-0.2
	289	Wall - concrete	0.0
	290	Ceiling Support - metal - rear	0.0
	291	Fascia Support - Wood	0.0
	292	Door frame - metal - back door	3.2
	293	Door - metal - back door	0.1
	294	Wall - concrete	0.2
	295	Wall - wood	-0.2
	296	Door frame - metal	0.5
	297	Door - metal	0.0
	298	Window casing - wood	0.1
Building 532 Field Service Technician Facility Interior	299	Wall - drywall - papered	-0.1
	300	Wall - drywall - papered	0.2
	301	Wall - drywall - papered	0.1
	302	Wall - drywall - papered	-0.1
	303	Wall - drywall - papered	0.0
	304	Wall - drywall - papered	-0.2
	305	Wall - drywall - papered	-0.1
	306	Wall - drywall - papered	-0.1
	307	Wall - drywall - papered	-0.1
	308	Wall-drywall - papered	-0.1
	309	Wall-drywall - papered	-0.1

	310	Wall - drywall - papered	-0.1
	311	Wall - drywall - papered	0.0
312	Wall - drywall - papered	-0.2	
313	Ceiling Tile	-0.1	
314	Window Casing - wood	0.2	
315	Door frame - wood	-0.1	
316	Door - wood	-0.2	
317	Baseboard - wood	0.1	
318	Door frame - wood	-0.1	
319	Door - wood	0.1	
320	Baseboard	0.1	
321	Door frame - wood	0.1	
322	Door - wood	0.0	
323	Baseboard - wood	0.1	
324	Walk-through - wood	0.0	
325	Window frame - wood - dispatch area	-0.2	
	Calibrations 328	Calibrations	Acceptable

Lead-Based Paint was detected in as indicated above.

Testing was performed with a properly calibrated XRF instrument manufactured by RMD, Inc., Model LPA-1, Serial Number 3319.

APPENDIX C -
 ACM SURVEY REPORT

LIMITED ASBESTOS FACILITY SURVEY

Gainesville Regional Utilities

Parcel 1 (528 Southeast $5^{\text {th }}$ Avenue) \& Parcel 2 (555 Southeast $5^{\text {th }}$ Avenue)

Gainesville, Florida 32601
ECT No. 110059-0100

Prepared for:
Gainesville Regional Utilities
Post Office Box 147117; Station A-128
Gainesville, Florida 32614

Issue Date: June 21, 2011

James Spinnenweber
Asbestos Inspector \& Management Planner

Michael C. Duvall, LAC
Licensed Asbestos Consultant
Florida License No. AX0000038

Prepared by:
Environmental Consulting \& Technology, Inc. (ECT)
3701 Northwest $98^{\text {th }}$ Street
Gainesville, Florida 32606
Phone: (352) 332-0444
FAX: (352) 332-6722

TABLE OF CONTENTS

Section Page
EXECUTIVE SUMMARY
1.0 SURVEY PURPOSE AND PROCEDURES 1-1
2.0 ASBESTOS SURVEY METHODOLOGY 2-1
3.0 FACILITY DESCRIPTION 3-1
4.0 LABORATORY RESULTS AND HAZARD ASSESSMENT 4-1
5.0 CONCLUSIONS AND RECOMMENDATIONS 5-1
5.1 CONCLUSIONS 5-1
5.2 RECOMMENDATIONS 5-1
6.0 LIMITATIONS 6-1

APPENDICES

APPENDIX A-ENVIRONMENTAL CONSULTING \&TECHNOLOGY, INC. PERSONNEL CERTIFICATIONS
APPENDIX B-LABORATORY ACCREDITATIONS
APPENDIX C-PHOTOGRAPHS
APPENDIX D-ASBESTOS LABORATORY REPORT AND CHAN OF CUSTODY

LIST OF TABLES

TABLE 1 ASBESTOS SURVEY AND ASSESSMENT FORM

EXECUTIVE SUMMARY

Environmental Consulting \& Technology, Inc. (ECT), has completed a U.S. Environmental Protection Agency (EPA) National Emissions Standards for Hazardous Air Pollutants (NESHAP) limited survey of suspect asbestos-containing materials (ACM) at the Gainesville Regional Utilities (GRU) facilities located at Parcel 1 (528 Southeast $5^{\text {th }}$ Avenue) \& Parcel 2 (555 Southeast $5^{\text {th }}$ Avenue), in Gainesville, Florida. It is the understanding of ECT that this survey is for due diligence information only. No renovation activities are currently scheduled.

On May 25, 2011, ECT personnel conducted a limited survey of the onsite structures and collected bulk samples of suspect ACM for laboratory analysis, to determine asbestos content and type using polarized light microscopy (PLM). The following four buildings were included in the limited ACM survey:

Parcel 1-528 Southeast $5^{\text {th }}$ Avenue

- Field Services Technicians (FST) Building
- Wastewater Office (WO)
- Field Services (FS) Building

Parcel 2-555 Southeast $5^{\text {th }}$ Avenue

- Operations Center \& Warehouse (OCW)

One hundred and thirty nine bulk samples of suspect ACM were collected for laboratory analysis. Asbestos was detected in the following building materials:

- Gray caulking on the exterior window of the WO building;
- Unknown color vinyl floor tile (VTF) in the front doorway area of the FS building;
- Black condensation barrier under the sink in the rear bathroom of the FS building;
- White pipe insulation with white wrap in the main mechanical room of the OCW building; and
- Black condensation barrier under the sink in the west kitchenette area of the OCW building.

Please note: Not all areas were accessible at the time of survey due to operational status and/or damage potential. These areas include: a small office area and mechanical room of the FST; areas behind the paneling (including white wall paneling) in the FST (Copy Room, Men's Restroom, and Women's Restroom) and in the OCW building (West Wing Break Room and the West Wing Meter Room); area behind the restroom mirrors in the WO building; the HVAC ducts with white flashing in the FST and the OCW building, the roof decking and roofing material of all four buildings (FST, WO, FS, and OCW), and various HVAC gaskets and fire doors in the FST and the OCW buildings.

1.0 SURVEY PURPOSE AND PROCEDURES

ECT conducted a limited asbestos survey of suspect $A C M$ in the following four GRU buildings:

Parcel 1-528 Southeast $5^{\text {th }}$ Avenue

- Field Services Technicians (FST) Building
- Wastewater Office (WO)
- Field Services (FS) Building

Parcel 2-555 Southeast $5^{\text {th }}$ Avenue

- Operations Center \& Warehouse (OCW)

Several buildings located in the rear of the OCW property were not surveyed at the request of GRU. A site location map is provided as Figure 1.

The objective of the survey was to identify the suspect ACM that may be present in order to comply with the EPA NESHAP requirements and the requirements of the Occupational Safety and Health Administration (OSHA).

The survey was performed in general accordance with the EPA NESHAP survey requirements and using the EPA Asbestos Hazard Emergency Response Act (AHERA) sampling protocols to determine the number of bulk samples collected and to comply with OSHA regulations governing asbestos related activities. Appendix A contains ECT personnel asbestos certifications.

Mr. Ronald M. Noark and Mr. James Spinnenweber, EPA AHERA accredited asbestos inspectors, conducted a walk-through of the structure on May 25,2011 , in order to identify homogeneous areas (materials similar in color and texture) of suspect ACM. The survey was then performed on typical suspect building materials to investigate and/or determine the location, quantity, type, condition, and potential for damage of suspect friable and non-
friable ACM. EPA identifies friable materials as those which, when dry, can be crumbled, pulverized, or reduced to powder by hand pressure.

One hundred thirty nine samples of suspect ACM were collected from the structures and submitted for analysis to a National Voluntary Laboratory Accreditation Program (NVLAP) accredited laboratory (Appendix B). A site location map is provided in Figure 1. Figures 2, 3,4 , and 5 present rough scale drawings of each building, indicating sample locations. Table 1 presents a description of all of the samples collected.

Photographic documentation of each sample location was also obtained. Photographs of the sample locations that indicated positive analytical results are provided in Appendix C. Photographs of additional sample locations can be provided upon request.

2.0 ASBESTOS SURVEY METHODOLOGY

The bulk samples of suspect ACM collected were analyzed by a laboratory accredited by NVLAP using PLM (EPA 600/R-93/116). This methodology identifies the quantity and type of asbestos, if any, in the sample being analyzed. Any material containing more than one percent (>1 percent) asbestos is considered to be an ACM according to the EPA regulations (Chapter 40 Code of Federal Regulations [CFR] Part 763) and OSHA 29 CFR 1926.1101 and 29 CFR 1910.1001. In an effort to control analysis costs, ECT instructed the laboratory to discontinue analysis of additional samples within a homogeneous area when one sample within that homogeneous area tested positive.

3.0 FACILITY DESCRIPTION

The GRU facilities consists of the FST building, WO building, FS building, the OCW building, exterior material storage areas, and parking areas. The southern buildings of Parcel 2 were not included in this limited ACM survey at the request of GRU. The following suspect asbestos containing building materials (ACBM) were observed in the subject areas:

- FST Building: Grey floor grout and grey baseboard with tan glue in the main break room; ceramic tile with white grout in the men and women's bathrooms; grey and white interior window caulk, pink joint compound on the fire wall, ceiling board, wallboard, fire doors, flexible metal duct work and joint compound throughout the building; and black tar paper (exterior roof). Sample locations at the FST are presented on Figure 2.
- WO Building: Brown expansion joint material in the northeastern storage room; gray duct flashing and off white condensation barrier under sink in the kitchenette area; gray window caulk and tan surfacing on the exterior of the building; grey floor tile and grout in the men's and women's bathrooms; white tongue and groove ceiling tile (decorative) hanging on the entrance hallway; grey baseboard with yellow glue in the southwest hallway, yellow insulation with black batt, carpet glue, ceiling board, wallboard, flexible metal duct work, joint compound, and grey/white/green terrazzo flooring throughout the building; and black tar paper (exterior roof). Sample locations at the WO building are presented on Figure 3.
- FS Building: Tan-flaked floor tile with yellow glue in the men's and women's bathrooms; green VCT (bottom layer) in the men's bathroom; black masik, metal tape, and black condensation barrier under sink in kitchenette area; unknown color VCT at front doorway entrance; tan surfacing on the exterior of the building; yellow insulation with black batt, carpet glue, ceiling board, wallboard, flexible metal duct work, joint compound, and grey/white/green terrazzo flooring throughout the building;
and black tar paper (exterior roof). Sample locations at the FS building are presented on Figure 4.
- OCW Building: Gray/tan floor tile (12 -inch square) with yellow glue and the white condensation barrier under sink in the east wing kitchen area; white ceramic floor tile (2 -inch square) in the east wing men's and women's bathrooms; gray striped floor tile with yellow glue in the electric meter room; red ceramic floor tile with grey grout in the electric meter side room; light grey striped floor tile with yellow glue in the gas meter room; white pipe insulation with white wrap and pink/tan/gray terrazzo flooring in the main mechanical room; grey flaked floor tile with white glue in the warehouse office; black condensation barrier under sink in the west kitchenette area; grey condensation barrier under sink and tan/white floor tile (12-inches square) with yellow glue in the west wing breakroom, black felt paper under the mezzanine in the west wing office area, yellow insulation with black batt, carpet glue, ceiling board, wallboard, flexible metal duct work, joint compound, basecoat-sheetrock, skimcoat-sheetrock, and gray plaster with white skimcoat throughout the building. Sample locations at the OCW building are presented on Figure 5.

The suspect ACBMs appeared to be in good condition at the time of the survey. Any other unidentified suspect ACM found within the structures during any renovation activities, not specifically identified in this report, must be considered to be ACM until determined to be non-ACM by a licensed asbestos consultant and laboratory analysis.

4.0 LABORATORY RESULTS AND HAZARD ASSESSMENT

The laboratory results for the collected samples reported asbestos in the following building materials:

- Sample number 51 contained 5 percent Chrysotile asbestos in the grey window caulking on the front exterior of the WO building;
- Sample number 72 contained 25 percent Chrysotile asbestos in the unknown color VCT (bottom layer) at the front doorway area of the FS building;
- Sample number 74 contained 3 percent Chrysotile asbestos in the black condensation barrier under the sink in the rear bathroom of the FS building;
- Sample number 85 contained 40 percent Chrysotile and 10 precent Amosite asbestos in the white pipe insulation with white wrap in the main mechanical room of the OCW building; and
- Sample number 96 contained 10 percent Chrysotile asbestos in the black condensation barrier under the sink in the west kitchenette area of the OCW building.

Table 1 summarizes the asbestos survey and assessment results. Photographic documentation of each sample location which indicated ACM is provided in Appendix C. The asbestos detected in the gray window caulk, floor tiles, and condensation barrier is an EPA NESHAP Category II, non-friable material. These ACMs were observed to be in good condition at the time of the survey. The asbestos detected in the white pipe insulation with white wrap is friable, and is therefore regulated asbestos containing material (RACM). The white pipe insulation was observed to be in good condition.

Should any renovation activities occur, the ACM detected would likely have a high damage potential. Dependent upon the method of removal and waste consolidation practices used during renovation activities, the identified ACM could become regulated ACM under NESHAP; therefore, all ACM must be removed prior to renovation by an accredited
asbestos abatement contractor and disposed of at an appropriately permitted landfill prior to renovation activities.

A copy of the certified laboratory analytical report and the corresponding chain of custody are provided in Appendix D.

5.0 CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS

ECT has completed the EPA NESHAP limited asbestos survey of the Parcel 1 (528 Southeast $5^{\text {th }}$ Avenue) and Parcel 2 (555 Southeast $5^{\text {th }}$ Avenue) at the GRU facilities located in Gainesville, Florida. One hundred thirty nine bulk samples of suspect ACM were collected and submitted for laboratory analysis of asbestos content using PLM methodology. The laboratory results indicated asbestos is present in the grey window caulking on the front exterior of the WO building, the unknown color vinyl floor tile (bottom layer) at the front doorway area of the FS building, the black condensation barrier under the sink in the rear bathroom of the FS building; the white pipe insulation with white wrap in the main mechanical room of the OCW building; and the black condensation barrier under the sink in the west kitchenette area of the OCW building.

5.2 RECOMMENDATIONS

The limited asbestos survey was conducted for due diligence information only, and no renovation activities are currently scheduled. ECT recommends that the materials be removed by a licensed asbestos contractor should any renovation activities take place.

6.0 LIMITATIONS

All of the professional opinions presented in this limited asbestos survey report are based solely on the scope of work conducted and sources referred to in this report. The data presented by ECT in this report were collected and analyzed using generally accepted industry methods and practices at the time the report was generated. This report represents the conditions, locations, and materials that were observed at the time the fieldwork was performed.

TABLES

TABLE 1. ASBESTOS SURVEY AND ASSESSMENT FORM

Client Name: Gainesville Regional Utilities - Parcel 1 \& 2

Consultant:	ECT
ECT Project No.:	$110059-0100$
Survey Date:	May 25,2011

Sample No.	Material	HA	Functional Space	Quantity	Condition	Damage Potential	$\begin{gathered} \text { Friable } \\ \text { Y/N } \end{gathered}$	Asbestos Type\%	EPA NESHAP Category
1	Grey Floor Grout	1	FSTF - Water/Wastewater Tech Breakroom		Good	Low	No	NAO	
2	Grey Floor Grout	1	FSTF - Water/Wastewater Tech Breakroom		Good	Low	No	NAO	
3 a	Grey Baseboard	2	FSTF - Water/Wastewater Tech Breakroom		Good	Low	No	NAO	
3b	Tan Glue	2	FSTF - Water/Wastewater Tech Breakroom		Good	Low	No	NAO	
4a	Grey Baseboard	2	FSTF - Water/Wastewater Tech Breakroom		Good	Low	No	NAO	
4b	Tan Glue	2	FSTF - Water/Wastewater Tech Breakroom		Good	Low	No	NAO	
5	Ceiling Tile Dot Fissures	3	FSTF - Water/Wastewater Tech Breakroom		Good	Low	Yes	NAO	
6	Ceiling Tile Dot Fissures	3	FSTF - Water/Wastewater Tech Breakroom		Good	Low	Yes	NAO	
7 a	Wallboard	4	FSTF - Mens Bathroom		Good	Low	Yes	NAO	
7 b	Joint compound	4	FSTF - Mens Bathroom		Good	Low	No	NAO	
8 a	Wallboard	4	FSTF - Mens Bathroom		Good	Low	Yes	NAO	
8 b	Joint compound	4	FSTF - Mens Bathroom		Good	Low	No	NAO	
9 a	Ceramic Tile	5	FSTF - Mens Bathroom		Good	Low	No	NAO	
9 b	White Grout	5	FSTF - Mens Bathroom		Good	Low	No	NAO	
10a	Ceramic Tile	5	FSTF - Mens Bathroom		Good	Low	No	NAO	
10b	White Grout	5	FSTF - Mens Bathroom		Good	Low	No	NAO	
11	Wallboard/Joint compound	6	FSTF - Hallway		Good	Low	Yes	NAO	
12a	Wallboard	6	FSTF - Hallway		Good	Low	Yes	NAO	
12b	Joint compound	6	FSTF - Hallway		Good	Low	No	NAO	
13 a	Wallboard	7	FSTF - Warehouse		Good	Low	Yes	NAO	
13 b	Joint compound	7	FSTF - Warehouse		Good	Low	No	NAO	

TABLE 1. ASBESTOS SURVEY AND ASSESSMENT FORM
Client Name: Gainesville Regional Utilities - Parcel $1 \& 2$
Address: $\frac{528 \& 555 \text { Southeast Fifth Avenue }}{\text { Gain }}$

Consultant:	ECT
ECT Project No.:	$110059-0100$
Survey Date:	May 25,2011

Sample No.	Material	HA	Functional Space	Quantity	Condition	Damage Potential	Friable Y/N	Asbestos Type\%	EPA NESHAP Category
14 a	Wallboard	7	FSTF - Warehouse		Good	Low	Yes	NAO	
14 b	Joint compound	7	FSTF - Warehouse		Good	Low	No	NAO	
15	Pink Joint Compound	8	FSTF - Warehouse		Good	Low	No	NAO	
16	Pink Joint Compound	8	FSTF - Warehouse		Good	Low	No	NAO	
17	Grey/White Window Caulk	9	FSTF - Water/Wastewater Tech Breakroom		Good	Low	No	NAO	
18	Grey/White Window Caulk	9	FSTF - Water/Wastewater Tech Breakroom		Good	Low	No	NAO	
19	Carpet glue	10	WWO - Southwest Hallway		Good	Low	No	NAO	
20	Carpet glue	10	WWO - Southwest Hallway		Good	Low	No	NAO	
21 a	Grey Baseboard	11	WWO - Southwest Hallway		Good	Low	No	NAO	
21 b	Yellow Glue	11	WWO - Southwest Hallway		Good	Low	No	NAO	
22a	Grey Baseboard	11	WWO - Southwest Hallway		Good	Low	No	NAO	
22b	Yellow Glue	11	WWO - Southwest Hallway		Good	Low	No	NAO	
23a	Wallboard	12	WWO - Southwest Hallway		Good	Low	Yes	NAO	
23 b	Joint compound	12	WWO - Southwest Hallway		Good	Low	No	NAO	
24 a	Wallboard	12	WWO - Southwest Hallway		Good	Low	Yes	NAO	
24 b	Joint compound	12	WWO - Southwest Hallway		Good	Low	No	NAO	
25 a	Yellow Insulation	13	WWO - Southwest Hallway		Good	Low	No	NAO	
25 b	Black Batt	13	WWO - Southwest Hallway		Good	Low	No	NAO	
26a	Yellow Insulation	13	WWO - Southwest Hallway		Good	Low	No	NAO	
26 b	Black Batt	13	WWO - Southwest Hallway		Good	Low	No	NAO	
27	2X2 White Ceiling Tile	14	WWO - Southwest Hallway		Good	Low	Yes	NAO	
28	2X2 White Ceiling Tile	14	WWO - Southwest Hallway		Good	Low	Yes	NAO	
29	White Wall Surfacing	15	WWO - Southwest Hallway		Good	Low	No	NAO	
30	White Wall Surfacing	15	WWO - Kichenette Area		Good	Low	No	NAO	
31	White Wall Surfacing	15	WWO - Northeast Hallway		Good	Low	No	NAO	
32	Gray Dust Flashing	16	WWO - Kichenette Area		Good	Low	No	NAO	
33	Gray Dust Flashing	16	WWO - Kichenette Area		Good	Low	No	NAO	

TABLE 1. ASBESTOS SURVEY AND ASSESSMENT FORM

Client Name: | Gainesville Regional Utilities - Parcel $1 \& 2$ |
| :--- |
| Address: |
| $\frac{528 \& 555 \text { Southeast Fifth Avenue }}{\text { Gainesville, Alachua County, Florida }}$ |.

Consultant:	ECT
Project No:	$110059-0100$
Survey Date:	May 25,2011

$\begin{gathered} \text { Sample } \\ \text { No. } \end{gathered}$	Material	HA	Functional Space	Quantity	Condition	Damage Potential	$\begin{gathered} \text { Friable } \\ \mathbf{Y} / \mathbf{N} \end{gathered}$	Asbestos Type\%	EPA NESHAP Category
34	Off White condensation barrier	17	WWO - Kichenette Area		Good	Low	No	NAO	
35	Off White condensation barrier	17	WWO - Kichenette Area		Good	Low	No	NAO	
36	Grey/White/Green Terrazzo Floor	18	WWO - Northeast Storage Room		Good	Low	No	NAO	
37	Grey/White/Green Terrazzo Floor	18	WWO - Northeast Storage Room		Good	Low	No	NAO	
38	Brown Expansion Joint	19	WWO - Northeast Storage Room		Good	Low	No	NAO	
39	Brown Expansion Joint	19	WWO - Northeast Storage Room		Good	Low	No	NAO	
40	4X2 Dot Fissure Ceiling Tile	20	WWO - Northeast Storage Room		Good	Low	Yes	NAO	
41	4X2 Dot Fissure Ceiling Tile	20	WWO - Northeast Storage Room		Good	Low	Yes	NAO	
42	Wallboard	21	WWO - Mens Bathroom		Good	Low	Yes	NAO	
43	Wallboard	21	WWO - Mens Bathroom		Good	Low	Yes	NAO	
44a	Grey Tile	22	WWO - Womens Bathroon		Good	Low	No	NAO	
44 b	Grout		WWO - Womens Bathroon		Good	Low	No	NAO	
45 a	Grey Tile	22	WWO - Womens Bathroon		Good	Low	No	NAO	
45b	Grout	22	WWO - Womens Bathroon		Good	Low	No	NAO	
46	White Tongue/Grove Ceiling Tile on Walls	23	WWO - Main Enterance Hallway		Good	Low	Yes	NAO	
47	White Tongue/Grove Ceiling Tile on Walls	23	WWO - Main Enterance Hallway		Good	Low	Yes	NAO	
48	Tan Exterior Surfacing	24	WWO - Exterior Front		Good	Low	No	NAO	
49	Tan Exterior Surfacing	24	WWO- Exterior Front		Good	Low	No	NAO	
50	Tan Exterior Surfacing	24	WWO- Exterior Front		Good	Low	No	NAO	
51	Gray Window Caulk	25	WWO- Exterior Front		Good	Low	No	5\% Chrysotile	Cat. II, NonFriable
52	Gray Window Caulk	25	WWO- Exterior Front		Good	Low	No	Stop Positive	Cat. II, NonFriable
$53 a$	12X12 Tan Flakes FT	26	FSO - Mens Bathroom		Good	Low	No	NAO	
53 b	Yellow Glue	26	FSO - Mens Bathroom		Good	Low	No	NAO	
54 a	12X12 Tan Flakes FT	26	FSO - Mens Bathroom		Good	Low	No	NAO	
54 b	Yellow Glue	26	FSO - Mens Bathroom		Good	Low	No	NAO	

TABLE 1. ASBESTOS SURVEY AND ASSESSMENT FORM

TABLE 1. ASBESTOS SURVEY AND ASSESSMENT FORM

Client Name: Gainesville Regional Utilities - Parcel 1 \& 2
Address: $\quad 528 \& 555$ Southeast Fifth Avenue
Gainesville, Alachua County, Florida

Consultant:	ECT
ECT Project No.:	$110059-0100$
Survey Date:	May 25,2011

Sample No.	Material	HA	Functional Space	Quantity	Condition	Damage Potential	Friable Y/N	Asbestos Type$\%$	EPA NESHAP Category
75	Black condensation barrier	36	FSO - Rear Bathroom		Good	Low	No	Stop Positive	
76	Tan Exterior Surfacing	37	FSO - Front Exterior		Good	Low	No	NAO	
77	Tan Exterior Surfacing	37	FSO - Front Exterior		Good	Low	No	NAO	
78	Tan Exterior Surfacing	37	FSO - Front Exterior		Good	Low	No	NAO	
79	Pink Tan Gray Terrazzo Floor	38	OCW - Mechanical Room		Good	Low	No	NAO	
80a	Skimcoat - Sheetrock	39	OCW - Mechanical Room		Good	Low	No	NAO	
80b	Base Coat - Sheetrock	39	OCW - Mechanical Room		Good	Low	No	NAO	
81a	Skimcoat - Sheetrock	39	OCW - Mechanical Room		Good	Low	No	NAO	
81 b	Base Coat - Sheetrock	39	OCW - Mechanical Room		Good	Low	No	NAO	
82	Wallboard	40	OCW - Mechanical Room		Good	Low	Yes	NAO	
83	Wallboard	40	OCW - Mechanical Room		Good	Low	Yes	NAO	
84	White Pipe Insulation with White Wrap	41	OCW - Mechanical Room		Good	Low	Yes	40\% Chrysotile 10\% Amosite	RACM
85	White Pipe Insulation with White Wrap	41	OCW - Mechanical Room		Good	Low	Yes	Stop Positive	RACM
86	White Pipe Insulation with White Wrap	41	OCW - Mechanical Room		Good	Low	Yes	Stop Positive	RACM
87	2X2 White Ceiling Tile	42	OCW - Office (Mr. David Sparks)		Good	Low	Yes	NAO	
88	2 X 2 White Ceiling Tile	42	OCW - Office (Mr. David Sparks)		Good	Low	Yes	NAO	
89	Yellow Carpet Glue	43	OCW - Main Hallway Entrance		Good	Low	No	NAO	
90	Yellow Carpet Glue	43	OCW - Main Hallway Entrance		Good	Low	No	NAO	
91	2X2 Dot Fissure Ceiling Tile	44	OCW - Main Hallway West Side		Good	Low	Yes	NAO	
92	2 X 2 Random Dot Ceiling Tile	45	OCW - Main Hallway West Side		Good	Low	Yes	NAO	
93	2X2 Random Dot Ceiling Tile	45	OCW - Main Hallway West Side		Good	Low	Yes	NAO	
94 a	Yellow Insulation	46	OCW - West Kichenette Area		Good	Low	No	NAO	
94 b	Black Batt	46	OCW - West Kichenette Area		Good	Low	No	NAO	
95 a	Yellow Insulation	46	OCW - West Kichenette Area		Good	Low	No	NAO	
95 b	Black Batt	46	OCW - West Kichenette Area		Good	Low	No	NAO	
96	Black condensation barrier	47	OCW - West Kichenette Area		Good	Low	No	10\% Chrysotile	Cat. II, NonFriable

TABLE 1. ASBESTOS SURVEY AND ASSESSMENT FORM
Client Name: Gainesville Regional Utilities - Parcel 1 \& 2
Address: $\frac{528 \& 555 \text { Southeast Fifth Avenue }}{\text { Gainesville Alach Coity Flore }}$
Consultant:
ECT Project No.: $\frac{\text { ECT }}{110059-0100}$
Survey Date:

Sample No.	Material	HA	Functional Space	Quantity	Condition	Damage Potential	Friable Y/N	Asbestos Type\%	EPA NESHAP Category
97	Black condensation barrier	47	OCW - West Kichenette Area		Good	Low	No	Stop Positive	Cat. II, NonFriable
98a	Gray Striped FT	48	OCW - Electric Meter Room		Good	Low	No	NAO	
98 b	Yellow Glue	48	OCW - Electric Meter Room		Good	Low	No	NAO	
99 a	Gray Striped FT	48	OCW - Electric Meter Room		Good	Low	No	NAO	
99 b	Yellow Glue	48	OCW - Electric Meter Room		Good	Low	No	NAO	
100a	Light Gray Striped FT	49	OCW - Gas Meter Room		Good	Low	No	NAO	
100b	Yellow Glue	49	OCW - Gas Meter Room		Good	Low	No	NAO	
101a	Light Gray Striped FT	49	OCW - Gas Meter Room		Good	Low	No	NAO	
10 lb	Yellow Glue	49	OCW - Gas Meter Room		Good	Low	No	NAO	
102a	Wallboard	50	OCW - Electric Meter Side Room		Good	Low	Yes	NAO	
102b	Joint compound	50	OCW - Electric Meter Side Room		Good	Low	No	NAO	
103a	Wallboard	50	OCW - Electric Meter Side Room		Good	Low	Yes	NAO	
103b	Joint compound	50	OCW - Electric Meter Side Room		Good	Low	No	NAO	
104a	Red Ceramic FT	51	OCW - Electric Meter Side Room		Good	Low	No	NAO	
104b	Gray Grout	51	OCW - Electric Meter Side Room		Good	Low	No	NAO	
105a	Red Ceramic FT	51	OCW - Electric Meter Side Room		Good	Low	No	NAO	
105b	Gray Grout	51	OCW - Electric Meter Side Room		Good	Low	No	NAO	
106a	Wallboard	52	OCW - Gas Meter Room		Good	Low	Yes	NAO	
$106 \mathrm{~b}$	Joint compound	52	OCW - Gas Meter Room		Good	Low	No	NAO	
107a	Wallboard	52	OCW - Gas Meter Room		Good	Low	Yes	NAO	
107b	Joint compound	52	OCW - Gas Meter Room		Good	Low	No	NAO	
108	2X4 Dot Fissure Ceiling Tile	53	OCW - Gas Meter Room		Good	Low	Yes	NAO	
109	2X4 Dot Fissure Ceiling Tile	53	OCW - Gas Meter Room		Good	Low	Yes	NAO	
110	Black Felt Paper under Mezzanine	54	OCW - West Wing Office		Good	Low	No	NAO	
111	Black Felt Paper under Mezzanine	54	OCW - West Wing Office		Good	Low	No	NAO	
112	2X2 Embossed Ceiling Tile	55	OCW - West Wing Mens Room		Good	Low	Yes	NAO	
113	2X2 Embossed Ceiling Tile	55	OCW - West Wing Mens Room		Good	Low	Yes	NAO	

TABLE 1. ASBESTOS SURVEY AND ASSESSMENT FORM

TABLE 1. ASBESTOS SURVEY AND ASSESSMENT FORM

Notes: $\quad \mathrm{NAO}=$ No Asbestos Observed.
Stop Positive $=$ Not Analyzed (previous sample for HA tested positive).
$\mathrm{HA}=$ Homogenous Area.
$\mathrm{SF}=$ Square Feet.
$\mathrm{LF}=$ Linear Feet.
NS $=$ Not sampled.
RACM $=$ Regulated Asbestos Containing Material.

FSTF - Field Services Technicians Facility
WWO-Water-Wastewater Office
FSO - Field Services Office
OCW- Operations Center \& Warchouse

Source: ECT, 2011.

FIGURES

Environmental Consulting \& Technology, inc.

FIGURE 1
SITE LOCATION MAP
GRU FACILITIES

Environmental Consulting \& Technology, Inc.

SCALE IN FEET
LEGEND

- ASBESTOS SAMPLE

FIGURE 2.
FIELD SERVICES TECHNICIAN BUILDING

S.E. 5th AVE.

FIGURE 4.

APPENDIX A-
 ENVIRONMENTAL CONSULTING \& TECHNOLOGY, INC. PERSONNEL CERTIFICATIONS

${ }^{\boldsymbol{E}} \mathrm{CO}^{\boldsymbol{\pi}}$

STATE OF FLORIDA
DEPRRTMANT OF BUSINESS AND PROFESSIONAL RRGULATION
ASBEGTO8 LICENSING UNIT 1940 HORTH MONROX STREDT

DUVALL MICHARL C
1712 CEYDESDALE DRIVE
LOXAHATCH:
FL 33407

Congratulational With this license you become one of the neerly one million Our profeetionsed by the Department of Buainese and Profescional Regulation. boxers to berbeque reethurants, range from architects to yacht brokern, from都
For information about aprove the way we do buanness in ordor to serve you better There you can find more information about our ditwions.myliordalicense.com. impact you, subscribe to depaitment nowt our divitions and the regulations that Department's infliativee.

Our miasion at the Department is: License Efficiantly, Regulato Fairly. We Tonatintly stitve to serve you better so that you can sorve your cuatomers. Thenk you for doing busineste in Florida, and congratulations on your new incensel

DETACH HERE
Acf. 543.9643

Named below Is rickisg orgnirgatyo
Under the IS LICHNSED
Expiration dates Mov of Chapter 30 , 2011 gig

ENVIROMMENTMI CON
MICBABL C. DUVANSULTING \& TECHNOLOCY
3701 NH 980
GAINESVILETE STREET
FL 32606-5004

TREE CENTER

Center for Training, Research and Education for Environmental Occupations certifies

James N. Spinnenweber

Environmental Consulting \& Technology, Inc., 3701 NW 98th SL. Gainesville, FL. 32606
Having passed a 25 -question exam with a score of $\mathbf{7 0 \%}$ or higher has successfully met training requirements for
Asbestos Refresher: Inspector
FDBPR Asbestos Licensing Unit: Provider \#0000995; Course *F L49-0004731 (1/2 Day; 3.40 Context Hours)
(Reaccreditation for Inspector under TSCA Title IIIAHERA)

Conducted

04/26/2011

Certificate \#: 110406-1963
Exam Date: 04/26/2011
EPA accreditation expires: 04/26/2012
Principal Instructor: Brian Duchene, PE
CRUs: 4
FBPR LAC: \#00009995; Course \#0004731
FBPE PDHs: \#0004021: \#0003570/Educational Institutions: 4.052106
ABIH: CM Points 0.67

University of Florida TREF O Center
 \qquad - What cover untadus

UNIVERSITY OF

 FLORIDA
TREE CENTER

Center for Training, Research and Education for Environmental Occupations certifies

James N. Spinnenweber

Having passed a 25 -question ex um with \& Technology, Inc., 3701 NW 98th St. Gainesville, FL 32006
Asbestos Refresher: Management Planner
(Reaccreditation for Management Planner Under TSCA Title IIIAHERA)
conducted

Certificate \#: 110407-1971
Exam Date: 04/26/201I
EPA accreditation expires: 04/26/2012
Principal Instructor: Russell E. Staffer, P.E
CESs: . 35
FBPR LAC: \#0000995; Course \#0004732
FBPE PDHs: \#0004021: \#0003571/Educational Institutions: 3.552106
FBPR CILB: \#0000995; Full Day INS/MP Ref Only; Course \#0003511,
ABIH: CM Pts 1.34; Full Day Inspector/MP Ref
FBPR ARCH: \#1790; Full Day INS/MP Ref; Course \#A R.04.318A (0007371); Hours: 8.0 (Intermediate)

Cant Hater
Assemble Director

[^2]

Vern Roberts Environmental Training, Inc. $1398794^{\text {th }}$ Avenue N Seminole, FL 33776 727-593-3067
Asbestos Survey \& Mechanical (inspector) Refresher Training

This is to certify that Ronald M. Noark

Has completed the requisite training for asbestos accreditation under TSCA TITLE I
Date of Examination 11/11/10

Date of Course: 11/11/10 Expiration Date 11/11/11 Certificate \# 1111104
course \#FL49-0006322 Provider \#FY49-0003810

Vern Roberts Environmental Training, Inc. $1398794^{\text {th }}$ Avenue N Seminole, FL 33776 727-593-3067 Asbestos Contractor Supervisor Refresher Training

This is to certify that
Ronald M. Noark

Has completed the requisite training for asbestos accreditation
under TSCA TITLE II
Date of Examination 11/10/10

Date of Course: 11/10/10 Expiration Date 11/10/11 Certificate \# 1110103
course \#FL49-0006321 Provider \#FL49-0003810

APPENDIX B-
 LABORATORY ACCREDITATIONS

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

EMSL Analytical, Inc.

5125 Adanson Street, Suite 900
Orlando, FL 32804
Dr. Blanca Cortes
Phone: 407-599-5887 Fax: 407-599-9063
E-Mail: bcortes@emsl.com
URL: http://www.emsl.com

2010-07-01 through 2011-06-30

APPENDIX CPHOTOGRAPHS

1. Photograph of the grey window caulking on the front exterior of the WO building.

2. Photograph of unknown color vinyl floor tile (bottom Layer) at the front doorway area of the FS building.

ASBESTOS SAMPLING AREAS
GRU PARCEL 1 AND PARCEL 2
528 \& 555 SOUTHEAST 5TH AVENUE GAINESVILLE, FLORIDA
Source: ECT, 2011.

$\square \square$

Environmental Consulting \& Technology, Inc.

3. Photograph of the black condensation barrier under sink in the rear bathroom area of the FS building.

4. Photograph of white pipe insulation with white wrap in the main mechanical room of the OCW building.

ASBESTOS SAMPLING AREAS
GRU PARCEL 1 AND PARCEL 2
528 \& 555 SOUTHEAST 5TH AVENUE GAINESVILLE, FLORIDA
Source: ECT, 2011.

ECT

Environmental Consulting \& Technology, Inc.

5. Photograph of the black condensation barrier under sink in the west kitchenette area of the OCW building.

APPENDIX D-

ASBESTOS LABORATORY REPORT AND CHAIN OF CUSTODY

Project: GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Prof:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using
Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07

Jonathan Teda, Asbestos Lab Manager or other approved signatory

[^3]Samples analyzed by EMSL Analytical. Inc. Orlando. FL NVLAP Lab Code 101151-0

James Spinnenweber Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St. Gainesville, FL 32606
Fax: (352) 332-6733 Phone: (352) 332-0444

Project: GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	1100590100
Received:	$05 / 27 / 1110.51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07

Analyst(s)

[^4]EHSL Anamten mo

Attn: James Spinnenweber

Environ	\& Tech Inc.	Customer ID:	EC\&T50
3701 NW 98th	inc.	Customer PO:	110059-0100
3701 N.W. 98th St		Received:	05/27/11 10:51 AM
Gainesville, FL 32		EMSL Order:	341104141
(352) 332-6733	Phone: (352) 332-0444		
GRU operations bldg		EMSL Prof:	
		Analysis Date:	6/6/2011

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Descriptlon	Appearance	Non-Asbestos				$\begin{aligned} & \text { Asbestos } \\ & \% \text { Type } \end{aligned}$
			\%	Fibrous	\%	Non-Fibrous	
8-W allboard 341104141-0008	FSTF-mens bathroom wallboard/joint compound	Brown Fibrous Heterogeneous	5\%	Cellulose		\% Non-fibrous (other) \% Gypsum	None Detected
8-Joint Compound 341104141-0008A	FSTF-mens bathroom wallboard/joint compound	White Non-Fibrous Heterogeneous				$\%$ Non-fibrous (other) \% Ca Carbonate	None Detected
9 -Ceramic Tile 341104141-0009	FSTF-mens bathroom ceramic tile w/white grout	White Non-Fibrous Homogeneous				\% Non-fibrous (other)	None Detected
9-Grout 341104141-00094	FSTF-mens bathroom ceramic tile w/white grout	White Non-Fibrous Homogeneous				Non-fibrous (other)	None Detected
10-Ceramic Tile 341104141-0010	FSTF-mens bathroom ceramic tile w/white grout	White Non-Fibrous Heterogeneous				Non-fibrous (other)	None Detected
10-Grout 341104141-0010A	FSTF-mens bathroom ceramic tile w/white grout	Yellow Non-Fibrous Homogeneous				Non-fibrous (other)	None Detected

Initial report from 06/06/2011 14 32:07
Analyst(s)
Adelmarie Bones (47) Jonathan Teda (40)
Jerry Cherian (102)

[^5]EvGL Annyluat ine

Attn:	James Spinnenweber
	Environmental Consulting \& Tech., Inc.
	3701 N.W. 98 th St.
	Gainesville, FL 32606
Fax:	(352) $332-6733$
Project:	GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07
Analyst(s)

Adeimanie Bones (47) Jonathan Teda (40)
Jerry Chenian (102)

[^6] used by the client to clam product certfication. approval, or endorsement by NVLAP. NIST or any agency of the federal government. Non-fnable organically bound matenals present a problem matnx and therefore EMSL recommends gravmetnc rediuction phor to analysis. Samples recelved in good condtion unless otherwise noted.
Samples analyzed by EMSL Analyticat, inc. Orlando. FL NVLAP Lab Code 101151-0
6) BL Anatyman bat
James Spinnenweber
Environmental Consulting \& Tech., Inc.
3701 N.W. 98th St.
Gainesville, FL. 32606

(352) $332-6733$
GRU operatlons bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos			Asbestos
			\%	Fibrous	\% Non-Fibrous	\% Type
$\begin{aligned} & 15 \\ & 341104141-0015 \end{aligned}$	FSTF-warehouse pink joint compound	Pink Non-Fibrous Heterogeneous			75% Non-fibrous (other) 25\% Ca Carbonate	None Detected
$\begin{aligned} & 16 \\ & 341104141-0016 \end{aligned}$	FSTF-warehouse pink joint compound	Pink Non-Fibrous Heterogeneous			75% Non-fibrous (other) 25\% Ca Carbonate	None Detected
$\begin{aligned} & 17 \\ & 341104141-0017 \end{aligned}$	FSTF- water/wastewater tech breakroom grey/white window caulk	Gray/White Non-Fibrous Heterogeneous	5\%	Cellulose	95\% Non-fibrous (other)	None Detected
$\begin{aligned} & 18 \\ & 341104141-0018 \end{aligned}$	FSTF- water/wastewater tech breakroom grey/white window caulk	Gray/White Non-Fibrous Heterogeneous			100\% Non-fibrous (other)	None Detected
$\begin{aligned} & 19 \\ & 341104141-0019 \end{aligned}$	WWO-southwest hallway - carpet glue	Yellow Non-Fibrous Homogeneous			100\% Non-fibrous (other)	None Detected
$\begin{aligned} & 20 \\ & 341104141.0020 \end{aligned}$	WWO-southwest hallway - carpet glue	Yellow Non-Fibrous Homogeneous			100\% Non-fibrous (other)	None Detected

Initial report from 06/06/2011 14:32:07

Analyst(s)
Adelmarie Bones (47) Jonathan Teda (40)

[^7] problem matnx and therefore EMSL recommends gravmetnc reduction phor to analysis. Samples recerved in good condtion unfess otherwise noted
Samples analyzed by EMSL Analyical. fnc. Oriando. FL NVLAP Lab Code $101151-0$

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Pro;	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07
Analyst(s)

Adelmarie Bones (47)	
Jerry Cherian (102)	Jonathan Teda (40)

Jonathan Teda, Asbestos Lab Manager
or other approved signatory

[^8] problem matnx and therefore EMSL recommends gravmetnc reduction phor to analysis. Samples received in good condition unless otherwise noted
Samples analyzed by EMSL Analylical. Inc. Orlando FL. NVLAP Lab Code $101151-0$

EMSL anatyen Mo

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos			Asbestos
			\%	Flbrous	\% Non-Fibrous	\% Type
24-Wallboard 344104141-0024	WWO-southwest hallway wallboard/joint compound	Brown/Gray Fibrous Heterogeneous	40\%	Cellulose	20\% Non-fibrous (other) 40\% Gypsum	None Detected
24-Joint Compound 341104141-0024A	WWO-southwest hallway wallboard/joint compound	White Non-Fibrous Heterogeneous			85\% Non-fibrous (other) 15\% Ca Carbonate	None Detected
25-Insulation 341104141-0025	WWO-southwest hallway - yellow insulation w/black batt	Yellow Fibrous Homogeneous	100\%	Min. Wool	0\% Non-fibrous (other)	None Detected
25-Black Batt 341104141-0025A	WWO-southwest hallway - yellow insulation w/black batt	Brown/Black Fibrous Heterogeneous	85\%	Cellulose	15\% Non-fibrous (other)	None Detected
26-Insulation 341104141-0026	WWO-southwest hallway - yellow insulation w/black batt	Yellow Fibrous Homogeneous	90\%	Min. Woot	10\% Non-fibrous (other)	None Detected
26-Black Batt 341104141 -00264	WWO-southwest hallway - yellow insulation w/black batt	Brown/Black Fibrous Heterogeneous	80\%	Cellulose	20\% Non-fibrous (other)	None Detected

Initial report from 06/06/2011 14:32:07
Analyst(s)
Adelmarie Bones (47) Jonathan Teda (40)

> Jonathan Teda, Asbestos Lab Manager or other approved signatory

[^9]James Spinnenweber
Environmental Consulting \& Tech., Inc.
3701 N.W. 98th St.
Gainesville, FL 32606

(352) $332-6733$
GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Pro:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07
Analyst(s)

Adelmarie Bones (47)
Jerry Cherian (102)

Jonathan Teda, Asbestos Lab Manager or other approved signatory

[^10]| Customer ID: | EC\&T50 |
| :--- | :--- |
| Customer PO: | $110059-0100$ |
| Received: | $05 / 27 / 1110: 51$ AM |
| EMSL Order: | 341104141 |
| | |
| EMSL Proj: | |
| Analysis Date: | $6 / 6 / 2011$ |

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbestos				Asbestos \% Type
Sample	Description	Appearance	\%	Flbrous	\%	Non-Fibrous	
34 341104141-0034	WWO-kichenette area - off white condensation barrier	White Fibrous Heterogeneous	20\%	Cellulose		80\% Non-fibrous (other)	None Detected
$\begin{aligned} & 35 \\ & 341104141-0035 \end{aligned}$	WWO-kichenette area - off white condensation barrier	White Fibrous Homogeneous	30\%	Cellulose		70\% Non-fibrous (other)	None Detected
36 $341104141-0036$	WWO-northeast storage room grey/white/green terrazzo floor	Gray Non-Fibrous Heterogeneous				70\% Non-fibrous (other) 30% Quartz	None Detected
$\begin{aligned} & 37 \\ & 341104141-0037 \end{aligned}$	WWO-northeast storage room grey/white/green terrazzo floor	Gray Non-Fibrous Heterogeneous				50% Non-fibrous (other) 50\% Quartz	None Detected
$\begin{aligned} & 38 \\ & 341104141-0038 \end{aligned}$	WWO-northeast storage room brown expansion joint	Brown/Black Fibrous Heterogeneous	75\%	Célulose		5\% Non-fibrous (other)	None Detected
$\begin{aligned} & 39 \\ & 341104141-0039 \end{aligned}$	WWO-northeast storage room brown expansion joint	Brown/Black Fibrous Heterogeneous	75\%	Cellulose		5\% Non-fibrous (other)	None Detected

Initial report from 06/06/2011 14:32:07

[^11]EMSL Anditud.
James Spinnenweber
Environmental Consulting \& Tech., Inc.
3701 N.W. 98th St.
Gainesville, FL 32606

(352) $332-6733$
GRU operatlons bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110.51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-Asbestos			Asbestos
Sample	Description	Appearance	\%	Fibrous	\% Non-Fibrous	\% Type
40 341104141-0040	WWO-northeast storage room - 4,2 dot fissure ceiling tile	White/Beige Fibrous Heterogeneous	$\begin{aligned} & 40 \% \\ & 20 \% \end{aligned}$	Cellulose Glass	20\% Non-fibrous (other) 20\% Perlite	None Detected
$\begin{aligned} & 41 \\ & 341104141-0041 \end{aligned}$	WWO-northeast storage room - 4×2 dot fissure ceiling tile	Gray/White Fibrous Homogeneous	$\begin{aligned} & 30 \% \\ & 30 \% \end{aligned}$	Cellulose Glass	20\% Non-fibrous (other) 20\% Perlite	None Detected
$\begin{aligned} & 42 \\ & 341104141-0042 \end{aligned}$	WWO-mens bathroom wallboard	Gray Non-Fibrous Heterogeneous	10\%	Cellulose	30% Non-fibrous (other) 60\% Gypsum	None Detected
$\begin{aligned} & 43 \\ & 341104141-0043 \end{aligned}$	WWO-mens balhroom wallboard	Brown/Gray Fibrous Heterogeneous	10\%	Cellulose	20\% Non-fibrous (other) 70\% Gypsum	None Detected
44-Ceramic Tile 341104141-0044	WWO-womens bathroom - grey tile \& grout	White Non-Fibrous Homogeneous			100\% Non-fibrous (other)	None Detected
44-Grout 341104141-0044A	WWO-womens bathroom - grey tile \& grout	Gray Non-Fibrous Heterogeneous			70% Non-fibrous (other) 30\% Quartz	None Detected

Initial report from 06/06/2011 14:32:07

Analyst(s) \begin{tabular}{l}
Adelmarie Bones (47)

Jerry Cherian (102)

\quad Jonathan Teda (40) \quad

Jonathan Teda. Asbestos Lab Manager

or other approved signatory
\end{tabular}

[^12]Samples analyzed by EMSL Anaiytical. Inc. Ortando. FL NVLAP Lab Code 101151.0

James Spinnenweber
Environmental Consulting \& Tech., Inc.
3701 N.W. 98th St.
Gainesville, FL 32606

| (352) $332-6733$ |
| :--- |\quad Phone: (352) 332-0444

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Pro:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07

Analyst(s)
Adelmarie Bones (47) Jerry Chenan (102)

Jonathan Teda, Asbestos Lab Manager or other approved signatory

[^13] problem matrix and therefore EMS L recommends grawmetnc reduction poor to analysis. Samples received in good condition unless otherwise noted.
Samples analyzed by EMSL Analytical. Inc. Orlando. FL NVLAP Lab Code 101151 -0

James Spinnenweber Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St.

Gainesville, FL 32606

Fax: (352) 332-6733
Project: GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos	Fibrous

Initial report from 06/06/2011 14:32:07

Initial report from 06/06/2011 14:32:07	
Analyst(s)	
Jerry Cherian (102)	Jonathan Teda (40)
Orie Bones (47)	Jonather approved signatory Teda, Asbestos Lab Manager

[^14] Samples analyzed by EMSL Anation formend grawmetnc reduction phor to analysis. Samples recerved in good condition unless othenwise noted.

James Spinnenweber

Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St. Gainesville, FL 32606
Fax: (352) 332-6733
Project: GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07

Analyst(s)
Adelmarie Bones (47) Jerry Cherian (102)

[^15]| Customer ID: | EC\&T50 |
| :--- | :--- |
| Customer PO: | $110059-0100$ |
| Received: | $05 / 27 / 111051$ AM |
| EMSL Order: | 341104141 |
| | |
| EMSL Proj: | |
| Analysis Date: | $6 / 6 / 2011$ |

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos				Asbestos
			\%	Fibrous	\%	Non-Fibrous	
60	FSO-mens bathroom - white wall surfacing				70% Non-fibrous (other) $30 \% \mathrm{Ca}$ Carbonate		None Detected
341104147-0060		Non-Fibrous Heterogeneous					
61	FSO-HVAC mechanical room white wall surfacing	White Non-Fibrous Heterogeneous			85\% Non-fibrous (other) 15\% Ca Carbonate		None Detected
$341104141-0061$							
62-Tape	FSO-kichenette area - metal tape w/black mastic under sink	Silver Non-Fibrous Homogeneous			100\% Non-fibrous (other)		None Detected
3411041410062							
62-Mastic	FSO-kichenette area - metal tape w/black mastic under sink	Black Non-Fibrous Homogeneous			100\% Non-fibrous (other)		None Detected
341104141.00624							
63-Tape	FSO-kichenette area - metal tape w/black mastic under sink	Silver Non-Fibrous Homogeneous			100\% Non-fibrous (other)		None Detected
341104141 -0063							
63-Mastic	FSO-kichenette area - metal tape w/black mastic under sink	Black Non-Fibrous Homogeneous			100\% Non-fibrous (other)		None Detected
341104141-0063A							

Initial report from 06/06/2011 14:32:07
Analyst(s)

Adelmarie Bones (47) Jonathan Teda (40)
Jerry Cherian (102)

EMSL mantains lability limited to cost of analysis. This repont relates only to the samples reported and may not be reproduced. except in full, without writen approval by EMSL. EMSL useds by the citent to ctatm productechection acturties or analytical method timitations. Interpretation and use of test results are the responsibility of the client. This report must not be problem matox and theretore

Attn: James Spinnenweber Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St. Gainesville, FL 32606

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos			Asbestos \% Type
			\%	Fibrous	\% Non-Fibrous	
64 $341104141-0064$	FSO-hallway white dot fissure ceiling tile	White/Beige Fibrous Heterogeneous	$\begin{aligned} & 40 \% \\ & 20 \% \end{aligned}$	Cellulose Glass	20\% Non-fibrous (other) 20\% Perlite	None Detected
$\begin{aligned} & 65 \\ & 341104141-0065 \end{aligned}$	FSO-halway white dot fissure ceiling tile	Gray ${ }^{W}$ hite Fibrous Homogeneous	$\begin{aligned} & 40 \% \\ & 20 \% \end{aligned}$	Cellulose Glass	20\% Non-fibrous (other) 20\% Perlite	None Detected
66-Insulation $341104141-0066$	FSO-hallway yellow insulation w/black batt	Yellow Fibrous Homogeneous	100\%	Min. Wool	0\% Non-fibrous (other)	None Detected
66-Black Batt $341104141-0066 \mathrm{~A}$	FSO-hallway yellow insulation w/black batt	Brown/Black Fibrous Heterogeneous	85\%	Cellulose	15\% Non-fibrous (other)	None Detected
67-Insulation 341104141-0067	FSO-hallway yellow insulation w/black batt	Yellow Non-Fibrous Heterogeneous	70\%	Glass	30\% Non-fibrous (other)	None Detected
67-Black Batt $341104141-0067 \mathrm{~A}$	FSO-hallway yellow insulation w/black batt	Black Non-Fibrous Heterogeneous	40\%	Cellulose	60\% Non-fibrous (other)	None Detected
$\begin{aligned} & 68 \\ & 341104141-0068 \end{aligned}$	FSO-hallway green/yellow carpet w/glue	Various Non-Fibrous Heterogeneous	5\%	Synthetic	95\% Non-fibrous (other)	None Detected

[^16]Initial report from 06/06/2011 14:32:07 Unable to seperate sample Composite analysis.
$\frac{\text { Analyst(s) }}{\text { Adelmarie Bones (47) Jonathan Teda (40) }}$

Jonathan Teda, Asbestos Lab Manager or other approved signatory

[^17]

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07

Analyst(s)	
Adelmarie Bones (47)	Jonathan Teda (40)
Jerry Cherian (102)	

Jonathan Teda, Asbestos Lab Manager or other approved signatory

EMSL mantans hablity limited to cost of anaiysis. This report refates only to the samples reported and may not be reproduced except in full. without written approval by EMSL. EMSL bears no responsibity for sample collection activties or analytical method timtations. Toterpretation and use of test results are the responsibility of the chent. this report must not be used by the chent to ciam producl certifcation, approval or endorsement by NVLAP. NIST or any agency of the federat government. Non-fnable organtcally bound matenals present a probiem matnx and therefore EMSL recommends grawmetric reduction pnor to analysis. Samples fecerved in good condition untess otherwise noted
Samples analyzed by EMS Analyicai. Inc. Onando, FL NVLAP Lab Code 101151-0

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51 \mathrm{AM}$
EMSL Order:	341104141
EMSL Proi:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using
Polarized Light Microscopy

Sample	Description	Non-Asbestos					Asbestos
		Appearance	\%	Fibrous		Non-Fibrous	\% Type
$\begin{aligned} & 74 \\ & 341104141-0074 \end{aligned}$	FSO-rear bathroom - black condensation barrier	Black Non-Fibrous Heterogeneous				97\% Non-fibrous (other)	3\% Chrysotile
$\begin{aligned} & 75 \\ & 341104141-0075 \end{aligned}$	FSO-rear bathroom - black condensation barrier						Stop Positive (Not Analyzed)
$\begin{aligned} & 76 \\ & 341104141-0076 \end{aligned}$	FSO-front exterior - tan extenor surfacing	Gray Non-Fibrous Heterogeneous				60\% Non-fibrous (other) 0\% Quartz	None Detected
$\begin{aligned} & 77 \\ & 341104141-0077 \end{aligned}$	FSO-front exterior - tan exterior surfacing	Gray Non-Fibrous Heterogeneous				6\% Non-fibrous (other) 0% Quartz	None Detected
$\begin{aligned} & 78 \\ & 341104141-0078 \end{aligned}$	FSO-front exterior - tan exterior surfacing	Gray Non-Fibrous Heterogeneous				0% Non-fibrous (other) 0% Quartz	None Detected
$\begin{aligned} & 138 \\ & 341104141-0079 \end{aligned}$	OCW--mechanical room - pink tan gray terrazzo floor	Various Non-Fibrous Heterogeneous				0% Non-fibrous (other) 0% Quartz	None Detected

Initial report from 06/06/2011 14:32:07

Analyst(s)	
Ade/marie Bones (47) Jerry Cherian (102)	Jonathan Teda (40)

[^18]James Spinnenweber
Environmental Consulting \& Tech., Inc.
3701 N.W. 98 th St.
Gainesville, FL 32606

| (352) $332-6733$ |
| :--- | :--- | :--- |

GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample		Non-Asbestos					Asbesstos	
	Description	Appearance	$\%$	Fibrous	\%	Non-Fibrous	\% Type	
79	OCW-mechanical room - pink tan gray terrazzo floor	Gray Non-Fibrous Heterogeneous				6\% Non-fibrous (other)	None Detected	
341104141-0080						20\% Ca Carbonate 20\% Quartz		
80-Skim Coat 341104141-0081	OCW--mechanical room - sheetrock	White Non-Fibrous Heterogeneous				0\% Non-fibrous (other)	None Detected	
						0% Quartz		
Sample appeared to de a plaster sample.								
80-Base Coat $341104141-0081 \mathrm{~A}$	OCW--mechanical room - sheetrock	Gray Non-Fibrous Heterogeneous				0\% Non-fibrous (other)	None Detected	
						\%\% Quartz		
	Sample appeared to be a plaster sample.							
81-Skim Coat 341104141-0082	OCW--mechanical room - sheetrock		White Non-Fibrous Heterogeneous				0\% Non-fibrous (other)	None Detected
						0\% Ca Carbonate		
						0\% Quartz		
Sample appeared to be a plaster sample.								
81-Base Coat 341104141-00824	OCW --mechanical room - sheetrock	Gray Non-Fibrous Heterogeneous				\% Non-fibrous (other)	None Detected	
						0\% Ca Carbonate		
						0\% Quartz		
			Sample appeared to be a plaster sample.					

Initial report from 06/06/2011 14:32:07

Analyst(s)	
Adelmarie Bones (47) Jerry Cherian (102) Jonathan Teda (40)	Jonathan Teda, Asbestos Lab Manager
or other approved signatory	

[^19]EMSL Annytical :ro

James Spinnenweber
Environmental Consulting \& Tech., Inc.
3701 N.W. 98th St.
Gainesville, FL 32606

(352) $332-6733$	
GRU operations bldg	

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07

Analyst(s) \begin{tabular}{l}
Adelmarie Bones (47)

Jerry Cherian (102)

\quad Jonathan Teda (40) \quad

Jonathan Teda, Asbestos Lab Manager

or other approved signatory
\end{tabular}

[^20] used by the chent to claim produci centication. approval, or endorsement by NVLAP. NIST or any agency of the federai government. Non-fnable organically bound matenais present a problem matinx and therefore EMSL tecommends graumetnc reduction prior to analysis. Samples received in good condifion untess otherwise noted
Samples analyzed by EMSL Analytical. inc. Orlando. FL NVLAP Lab Code 101151.0

Attn:	James Spinnenweber
	Environmental Consulting \& Tech., Inc.
	3701 N.W. 98th St.
	Gainesville, FL 32606
Fax:	
(352) $332-6733$	
Project:	

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07

Analyst(s)	
Adelmarie Bones (47) Jerry Cherian (102)	Jonathan Teda (40)

[^21]

James Spinnenweber Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St. Gainesville, FL 32606
Fax: (352) 332-6733 Phone: (352) 332-0444
Project: GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Anaiysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos			Asbestos
			\%	Fibrous	\% Non-Fibrous	\% Type
$\begin{aligned} & 93 \\ & 341104141-0095 \end{aligned}$	OCW-main hallway west side 2×2 random dot	Tan Fibrous Heterogeneous	$\begin{aligned} & 60 \% \\ & 10 \% \end{aligned}$	Cellulose Glass	15\% Non-fibrous (other) 15\% Perlite	None Detected
94-Insulation 341104141-0096	OCW-west kichenette area yellow insulation whlack batt	Yellow Fibrous Homogeneous	100\%	Min. Wool	0\% Non-fibrous (other)	None Detected
94-Black Batt 341104141-0096A	OCW-west kichenette area yellow insulation w/black batt	Brown/Black Fibrous Heterogeneous	85\%	Ceilulose	15\% Non-fibrous (other)	None Detected
95-Insulation 341104141-0097	OCW-west kichenette area yellow insulation w/black batt	Yellow Fibrous Heterogeneous	100\%	Glass	0\% Non-fibrous (other)	None Detected
95-Black Batt 341104141-0097A	OCW-west kichenette area yellow insulation w/black batt	Black Non-Fibrous Heterogeneous	40\%	Cellulose	60\% Non-fibrous (other)	None Detected
$\begin{aligned} & 96 \\ & 341104141-0098 \end{aligned}$	OCW-west kichenette area black condensation barrier	Black Non-Fibrous Heterogeneous			90\% Non-fibrous (other)	10\% Chrysotile

Initial report from 06/06/2011 14:32:07
Analyst(s)

Adelmarie Bones (47)	
Jerry Cherian (102)	Jonathan Teda (40)

Jonathan Teda, Asbestos Lab Manager
or other approved signatory

EMSL mantains liabitty limited to cost of analysis. This report relates only to the samples reported and may not be reproduced except in full. Without wniten approval by EMSL. EMSL bears no responsiblify for sample coliection activtess of analytical method limitations. interpretation and use of test results are the responsibity of the client. This report must not be used by the chent to clam produc: certfication. approval. or endorsement by NVLAP. NIST or any agency of the federal government. Non-fnable organically bound materials present a problem matnx and therefore EMSL recommends gravmetric reduction phor to anatysts. Samples received in good condition uniess otherwise noted.
Samples analyzed by EMSL Analytical. inc. Oriando. FL NVLAP Lab Code 101151.0
James Spinnenweber
Environmental Consulting \& Tech., Inc.
3701 N.W. 98 th St.
Gainesville, FL 32606

| (352) $332-6733$ |
| :--- | :--- |
| GRU operations bldg | Phone: (352) 332-0444

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using
Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos	Fibrous

[^22] Samples analyzed by EMS Analytical Inc. Oriande FL NVLAP ab code 101151.0 . Saples untess otherwise noted

James Spinnenweber
Environmental Consulting \& Tech., Inc.
3701 N.W. 98th St.
Gainesville, FL 32606
Fax: (352) 332-6733
Phone: (352) 332-0444
Project: GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos			Asbestos
			\%	Fibrous	\% Non-Fibrous	$\%$ Type
100-Floor Tile $341104141-0102$	OCW-gas meter room - light gray stripet FT w/yellow glue	Gray Non-Fibrous Homogeneous			100\% Non-fibrous (other)	None Detected
100-Glue $341104141-0102 \mathrm{~A}$	OCW -gas meter room - light gray stripet FT w/yellow glue	Yellow Non-Fibrous Homogeneous			100\% Non-fibrous (other)	None Detected
101-Floor Tile $341104141-0103$	OCW-gas meter room - light gray stripet FT w/yellow glue	White Non-Fibrous Heterogeneous			100\% Non-fibrous (other)	None Detected
101-Glue $341104141-0103 A$	OCW -gas meter room - light gray stripet FT w/yellow glue	Yellow Non-Fibrous Heterogeneous			100\% Non-fibrous (other)	None Detected
102-W allboard $341104141-0104$	OCW-electric meter side room wallboard/jaint compound	Brown/White Fibrous Heterogeneous	30\%	Cellulose	20\% Non-fibrous (other) 50\% Gypsum	None Detected
102-Joint Compound $341104141-0104 \mathrm{~A}$	OCW-electric meter side room. wallboard/joint compound	White Non-Fibrous Heterogeneous			70\% Non-fibrous (other) 30\% Ca Carbonate	None Detected

Initial report from 06/06/2011 14:32:07	
Analyst(s)	R
Adelmane Bones (47) Jonathan Teda (40) Jerry Cherian (102)	Jonathan Teda, Asbestos Lab Manager or other approved signatory

[^23]

James Spinnenweber
Environmental Consulting \& Tech., Inc.
$\mathbf{3 7 0 1}$ N.W. 98th St.
Gainesville, FL 32606

(352) 332-6733
GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proi:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos				Asbestos \% Type
			\%	Fibrous		Non-Fibrous	
103-W allboard 341104141 -0105	OCW-electric meter side room wallboard/joint compound	White Non-Fibrous Heterogeneous	20\%	Cellulose		40\% Non-fibrous (other) 40\% Gypsum	None Detected
103-Joint Compound $341104141-0105 \mathrm{~A}$	OCW-electric meter side room . wallboard/joint compound	White Non-Fibrous Heterogeneous				80% Non-fibrous (other) 20\% Ca Carbonate	None Detected
104-Ceramic Tile 341104141.0106	OCW-electric meter sideroom. red ceramic FT w/gray grout	Peach Non-Fibrous Heterogeneous				00\% Non-fibrous (other)	None Detected
104-Grout $341104141-0106 \mathrm{~A}$	OCW-electric meter side room red ceramic FT w/gray grout	Gray Non-Fibrous Heterogeneous				00\% Non-fibrous (other)	None Detected
105-Ceramic Tile $341104141-0107$	OCW-electric meter side room red ceramic FT w/gray grout	White Non-Fibrous Heterogeneous				90% Non-fibrous (other) 0% Quartz	None Detected
105-Grout 341704141.0107 A	OCW-electric meter side room red ceramic FT w/gray grout	Gray Non-Fibrous Heterogeneous				0% Non-fibrous (other) 0\% Ca Carbonate 0\% Quartz	None Detected

Initial report from 06/06/2011 $14: 32: 07$

Analyst(s)	
Adelmarie Bones (47)	
Jerry Cherian (102)	Jonathan Teda (40)

[^24] probiem matnx and therefore EMSL recommends gravmetne reduction pnor to analysis. Samples recerved in good condtion untess otherwise noted.
Samples analyzed by EMSL Analytical inc. Ortando, FL NVLAP Lab Code $101151-0$

Attn: James Spinnenweber
Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St. Gainesville, FL 32606

Fax: (352) 332-6733 Phone: (352) 332-0444
Project: GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 111051$ AM
EMSL Order:	341104141
EMSL Pro;:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 $\quad 14: 32: 07$
Analysts)

Adelmane Bones (47) Jonathan Teda (40)
Jerry Cherian (102)

[^25]Ghee analytical me

James Spinnenweber
Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St. Gainesville, FL 32606
Fax: (352) 332-6733 Phone: (352) 332.0444
Project: GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 111051$ AM
EMSL Order:	341104141
EMSL Pro:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Initial report from 06/06/2011 14:32:07
Anahyst(s)

Adelmarie Bones (47)
Jerry Cherian (102)

Jonathan Teda. Asbestos Lab Manager or other approved signatory

EMSL maintains liabifty limited to cost of analysis. This report relates only to the samples reported and may not be reproduced. except in full. without whiten approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method imitations Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to claim product centication, approval, or endorsement by NVLAP. NIST or any agency of the federal government. Non-fnable organically bound materials present a samples analyzed
Samples analyzed by EMSL Analytical Inc. Orlando. FL NVLAP Lav Code 101151-0

James Spinnenweber Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St. Gainesville, FL 32606

Fax: (352) 332-6733 Phone: (352) 332-0444
Project: GRU operations bidg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos				Asbestos \% Type
			\%	Fibrous	\%	Non-Fibrous	
$\begin{aligned} & 116 \\ & 341104141-0118 \end{aligned}$	OCW-west wing breakroom - grey condensate barrier	Gray Fibrous Heterogeneous	25\%	Cellulose		5\% Non-fibrous (other)	None Detected
$\begin{aligned} & 117 \\ & 341104141-0119 \end{aligned}$	OCW-west wing breakroom - grey condensate barrier	Gray Non-Fibrous Heterogeneous	25\%	Cellulose		5\% Non-fibrous (other)	None Detected
118-Floor Tile $341104141-0120$	OCW-west wing breakroom- 12×12 tan/white FT w/yellow glue	TanN Wite Non-Fibrous Heterogeneous				8\% Non-fibrous (other)	2\% Chrysotile
118-Glue 341104141-0120A	OCW-west wing breakroom-12×12 tan/white FT w/yellow glue	Yellow Non-Fibrous Homogeneous				0\% Non-fibrous (other)	None Detected
119-Floor Tile 341104141-0121	OCW-west wing breakroom-12×12 tan/white FT w/yellow glue						Stop Positive (Not Analyzed)
119-Glue 341104141-0121A	OCW-west wing breakroom-12×12 $\tan /$ white FT w/yellow glue	Yellow Non-Fibrous Heterogeneous				\% Non-fibrous (other)	None Detected

Initial report from 06/06/2011 14:32:07

Analyst(s)	
Adelmarie Bones (47)	Jonathan Teda (40)
Jerry Chenan (102)	

[^26]cost andytuat me

James Spinnenweber Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St. Gainesville, FL 32606
Fax: (352) 332-6733 Phone: (352) 332-0444
Project: GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Non-Asbestos				$\begin{aligned} & \text { Asbestos } \\ & \% \text { Type } \end{aligned}$
		Appearance	\%	Flbrous	\% Non-Fibrous	
120-Floor Tile 341104141 -0122	OCW-warehouse office - 12×12 gray flaked FT w/white glue	Gray Non-Fibrous Homogeneous			100\% Non-fibrous (other)	None Detected
SUGGEST TEM						
120-Glue 341104141-0122A	OCW-warehouse office - 12×12 gray flaked FT w/white glue	Yellow Non-Fibrous Homogeneous			100\% Non-fibrous (other)	None Detected
121-Floor Tile 341104141-0123	OCW-warehouse office -12×12 gray flaked FT w/white glue	Gray Non-Fibrous Heterogeneous			100\% Non-fibrous (other)	None Detected
SUGGEST TEM						
121-Glue 341104141-0123A	OCW-warehouse office - 12×12 gray flaked FT w/white glue	Yellow Non-Fibrous Heterogeneous			100\% Non-fibrous (other)	None Detected
122-W allboard $341104141-0124$	OCW-east wing womens bathroom wallboard/jcint compound	Brown/White Fibrous Heterogeneous	20\%	Cellulose	20\% Non-fibrous (other) 60\% Gypsum	None Detected

Initial report from 06/06/2011 14:32:07

Analyst(s)
Adelmarie Bones (47) Jonathan Teda (40)

[^27]| Attn: | James Spinnenweber |
| :--- | :--- |
| | Environmental Consulting \& Tech., Inc. |
| | 3701 N.W. 98 th St. |
| | Gainesville, FL 32606 |
| Fax: \quad (352) $332-6733$ | |
| Project: GRU operations bldg | |

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

		Non-Asbestos					Asbestos \% Type
Sample	Description	Appearance	\%	Fibrous	\%	Non-Fibrous	
122-Joint Compound $341104141-0124 A$	OCW-east wing womens bathroom wallboard/joint compound	White Non-Fibrous Heterogeneous				70\% Non-fibrous (other) 30\% Ca Carbonate	None Detected
123-Wallboard $341104141-0125$	OCW-east wing womens bathroom wallboard/joint compound	White Fibrous Heterogeneous	20\%	Cellulose		0% Non-fibrous (other) 0\% Gypsum	None Detected
123-Joint Compound $341104141.0125 A$	OCW-east wing womens bathroom wallboard/joint compound	White Non-Fibrous Heterogeneous				0% Non-fibrous (other) 0\% Ca Carbonate	None Detected
124-Plaster 341104141-0126	OCW-east wing womens bathroom - gray plaster w/white skim coat	Gray Non-Fibrous Heterogeneous				0% Non-fibrous (other) 0% Quartz	None Detected
124-Skim Coat 341104141-0126A	OCW -east wing womens bathroom - gray plaster w/white skim coat	White Non-Fibrous Heterogeneous				0% Non-fibrous (other) 0\% Ca Carbonate	None Detected

Initiai report from 06/06/2011 14:32:07
Analyst(s)

Adelmane Bones (47)
Jerry Cherian (102)

Jonathan Teda (40)

[^28]EMSL Annytical. is

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

		Non-Asbestos					Asbestos \% Type
Sample	Description	Appearance	\%	Fibrous	\%	Non-Fibrous	
125-Plaster $341104141-0127$	OCW-east wing womens bathroom - gray plaster w/white skim coat	Gray Non-Fibrous Heterogeneous				$\%$ Non-fibrous (other) \% Quartz	None Detected
125-Skim Coat $341104141-0127 A$	OCW -east wing womens bathroom - gray plaster w/white skim coat	White Non-Fibrous Heterogeneous				$\%$ Non-fibrous (other) \% Ca Carbonate	None Detected
126-Plaster 341104141-0128	OCW-east wing womens bathroom - gray plaster w/white skim coat	Gray Non-Fibrous Heterogeneous				$\%$ Non-fibrous (other) \% Ca Carbonate \% Quartz	None Detected
126-Skim Coat 341104141-0128.4	OCW-east wing womens balhroom - gray plaster w/white skim coat	White Non-Fibrous Heterogeneous				$\%$ Non-fibrous (other) \% Ca Carbonate \% Quartz	None Detected
127-Ceramic Tile $341104141-0129$	OCW -east wing mens bathroom 2×2 white ceramic FT w/grout	White Non-Fibrous Heterogeneous				Non-fibrous (other)	None Detected

Initial report from 06/06/2011 14:32:07

Anatyst(s)	
Adelmarie Bones (47) Jerry Cherian (102)	Jonathan Teda (40)

[^29]| Customer ID: | EC\&T50 |
| :--- | :--- |
| Customer PO: | $110059-0100$ |
| Received: | $05 / 27 / 1110: 51$ AM |
| EMSL Order: | 341104141 |
| | |
| EMSL Pro: | |
| Analysis Date: | $6 / 6 / 2011$ |

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

		Non-Asbestos					Asbestos
Sample	Description	Appearance	\%	Fibrous	\%	Non-Fibrous	\% Type
127-Grout $341104141-01294$	OCW-east wing mens bathroom 2×2 white ceramic FT w/grout	Gray Non-Fibrous Heterogeneous				0\% Non-fibrous (other)	None Detected
128-Ceramic Tile $341104141-0130$	OCW-east wing mens bathroom 2×2 white ceramic FT w/grout	White Non-Fibrous Heterogeneous				0% Non-fibrous (other) 0\% Quartz	None Detected
128-Grout 341104141-0730A	OCW-east wing mens bathroom 2×2 white ceramic FT w/grout	Gray Non-Fibrous Heterogeneous				0% Non-fibrous (other) 0\% Quartz	None Detected
129-Floor Tile 341104141-0131	OCW -east wing kitchen area 12×12 gray tan FT w/yellow glue	Gray/Tan Non-Fibrous Homogeneous				\% Non-fibrous (other)	None Detected
129-Glue 341104141-0131A	OCW-east wing kitchen area 12×12 gray tan FT w/yellow glue	Yellow Non-Fibrous Homogeneous				\% Non-fibrous (other)	None Detected
130-Floor Tile $341104141-0132$	OCW-east wing kitchen area 12×12 gray tan FT w/yellow glue	Tan Non-Fibrous Heterogeneous				\% Non-fibrous (other)	None Detected

| Initial report from 06/06/2011 $14: 32: 07$ |
| :--- | :--- |
| Analyst(s) |
| Adelmarie Bones (47)
 Jerry Cherian (102) Jonathan Teda (40) |
| or other approved signatory |

[^30]| Customer ID: | EC\&T50 |
| :--- | :--- |
| Customer PO: | $110059-0100$ |
| Received: | $05 / 27 / 1110: 51$ AM |
| EMSL Order: | 341104141 |
| EMSL Pro: | |
| Analysis Date: | $6 / 6 / 2011$ |

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos			Asbestos
			\%	Fibrous	\% Non-Fibrous	\% Type
130-Glue 341104141-0132A	OCW-east wing kitchen area 12×12 gray \tan FT w/yellow glue	Yelow Non-Fibrous Heterogeneous			100\% Non-fibrous (other)	None Detected
$\begin{aligned} & 131 \\ & 341104141-0133 \end{aligned}$	OCW-east wing kitchen area white condensation barrier	White Fibrous Heterogeneous	25\%	Cellulose	75\% Non-fibrous (other)	None Detected
$\begin{aligned} & 132 \\ & 341104141-0134 \end{aligned}$	OCW-east wing kitchen area white condensation barrier	White Non-Fibrous Heterogeneous			100\% Non-fibrous (other)	None Detected
133-W allboard $341104141-0135$	OCW-east wing kitchen area wallboard/joint compound	Brown/White Fibrous Heterogeneous	40\%	Cellulose	20\% Non-fibrous (other) 40\% Gypsum	None Detected
133-Joint Compound $341104141-0135 A$	OCW-east wing kitchen area wallboard/joint compound	White Non-Fibrous Heterogeneous			70\% Non-fibrous (other) $30 \% \mathrm{Ca}$ Carbonate	None Detected

Initial report from 06/06/2011 14:32:07

Analyst(s)	
Adelmarie Bones (47) Jerry Cherian (102)	Jonathan Teda (40)

[^31]| Customer ID: | EC\&T50 |
| :--- | :--- |
| Customer PO: | $110059-0100$ |
| Received: | $05 / 27 / 1110: 51$ AM |
| EMSL Order: | 341104141 |
| | |
| EMSL Proi: | |
| Analysis Date: | $6 / 6 / 2011$ |

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

		Non-Asbestos					Asbestos
Sample	Description	Appearance	\%	Fibrous	\%	Non-Fibrous	\% Type
134-W allboard $341104141-0136$	OCW-east wing kitchen area wallboard/joint compound	White Fibrous Heterogeneous	20\%	Ceflulose		40\% Non-fibrous (other) 40\% Gypsum	None Detected
134-Joint Compound 341104141-01364	OCW-east wing kitchen area wallboard/joint compound	White Non-Fibrous Heterogeneous				80% Non-fibrous (other) 20\% Ca Carbonate	None Detected
135-Plaster $341104141-0137$	OCW-east wing kitchen area - gray plaster w/white skim coat	Gray Non-Fibrous Heterogeneous				0\% Non-fibrous (other) 0\% Quartz	None Detected
135-Skim Coat 341104141-0137A	OCW east wing kitchen area - gray plaster w/white skim coat	White Non-Fibrous Heterogeneous				0\% Non-fibrous (other) 30% Ca Carbonate	None Detected
136-Plaster $341104141-0138$	OCW-east wing kitchen area - gray plaster w/white skim coat	Gray Non-Fibrous Heterogeneous				0\% Non-fibrous (other) 0\% Quartz	None Detected
136-Skim Coat $341104141-0138 \mathrm{~A}$	OCW-east wing kitchen area - gray plaster w/white skim coat	White Non-Fibrous Heterogeneous				0% Non-fibrous (other) 0% Ca Carbonate	None Detected

Initial report from 06/06/2011 14:32:07

Analyst(s) \begin{tabular}{l}
Adelmarie Bones (47)

Jerry Cherian (102)

\quad Jonathan Teda (40) \quad

Jonathan Teda, Asbestos Lab Manager

or other approved signatory
\end{tabular}

[^32]GMSL anatytan ©

James Spinnenweber
Environmental Consulting \& Tech., Inc. 3701 N.W. 98th St.
Gainesville, FL 32606
Fax:
(352) 332-6733

Phone: (352) 332-0444
Project:
GRU operations bldg

Customer ID:	EC\&T50
Customer PO:	$110059-0100$
Received:	$05 / 27 / 1110: 51$ AM
EMSL Order:	341104141
EMSL Proj:	
Analysis Date:	$6 / 6 / 2011$

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos				Asbestos \% Type
			\%	Fibrous	\%	Non-Fibrous	
137-Plaster	OCW-east wing kitchen area - gray plaster w/white skim coat	Gray Non-Fibrous Heterogeneous				0\% Non-fibrous (other)	None Detected
$341104141-0139$						20\% Ca Carbonate	
						0\% Quartz	
137-Skim Coat	OCW-east wing kitchen area - gray plaster w/white skim coat	White Non-Fibrous Heterogeneous				0\% Non-fibrous (other)	None Detected
341104141-0139A						20\% Ca Carbonate	
						0\% Quartz	

Initial report from 06/06/2011 14:32:07
Analyst(s)

Adelmarie Bones (47) Jonathan Teda (40)	Jonathan Teda, Asbestos Lab Manager
Jerry Cherian (102)	or other approved signatory

EMSL mantans liablify timited to cost of analysis. This repont relates only to the samples reported and may not be reproduced, except in full, without wniten approval by EMSL. EMSL bears no fesponsibfity for sample colfection actuvies or analytical method limitations. Interpretation and use of test fesults are the responsibity of the chent this report must not be used by the client to ciam product centication, aporovai, or endorsement by NVLAP. NIST or any agency of the federat govermment. Non-frable organically bound matenais present a problem matixand therefore EMSL recommends gravimetnc reduction pnor to analysts. Samples received in good comdtion uniess otherwise noted
Samples analyzed by EMSL Analyticai, inc. Oriando. FL NVLAP Lab Code 101151-0

EMSL ANALYTICAL CH	
Representative:	James Spinnenweber
Your Company	
Name:	ECT
Street:	3701 NW 98th Street
Box \#: 3701NW 98th Street	
City/State:	Gainesville, FL Zip: 32606
E-Mail Results to:	
Name:	James Spinnenweber
E-Mail:	jpinnenweber@ectinc.com
Project	
Name/Number:	GRU Operations Buildings

CHAIN OF CUSTODY

EMSL-Bill to:

	ECT
	Attn: James Spinnenweber
Street:	3701 NW 98th Street
Box\#:	
City/State:	
	Gainesville, FL \quad Zip: $\quad 32606$

Phone Results to:
Name: James Spinnenweber
Phone \#: (352) 322-0444
Purchase
Order \#: 110059-0100

EMSL ANALYTICAL

HOMOG. AREA	SAMPLE \#
!	

HOMOG. AREA	SAMP
1	1
1	2
2	3
2	4
3	5
3	6

HOMOG. AREA	SAMPLE \#	LOCATION	SAMPLE MATERIAL
26	53	FSO-Mens Bathroom	12 X 12 Tan Flakes FT with Yellow Glue
26	54	FSO-Mens Bahroom	12X12 Tan Flakes FT with Yellow Glue
27	55	FSO - Mens Bathroom	Green VFT Botom Layer
27	56	FSO-Mens Bathroom	
28	57	FSO-Mens Bathroom	
28	58	FSO-Mens Bathroom	
29	59	FSO-Mens Bathroom	White Wall Surfacing
29	60	FSO-Mens Bathroom	White Wall Surfacing
29	61	FSO - HVAC Mechanical Room	White Wall Surfacing
30	62	FSO - Kichencle Area	Metal Tape with Black Mastik under Sink
31	63	FSO - Kichenelte Area	Metal Tape with Black Mastik under Sink
31	64	FSO - Hallway	White Dot Fissure Ceiling Tile
32	66	FSO-Hallway	White Dot Fissure Ceiling Tile
32	67	FSO-Hallway	Yellow Insulation with Black Batr
33	68	FSO-Hallway	Yellow Insulation with Black Batl
33	69	So-Hallway	Green/Yellow Carpet with Glue
34	70	$\frac{\text { FSO - Front Doorway Area }}{\text { - Hallway }}$	Green/Yellow Carpet with Glue
34	71	FSO - Front Doortay Area	White/Green Terrazzo Floor
35	72	FSO-Front Doorwa	White/Green Terrazzo Floor
35	73	FSO - Front Doorw	Unknown Color VFT with Glue
36	74	FSO-Rear B	Unknown Color VFT with Glue
36	75	FSO-Rear Bath	Black condensation barrier
37	76	FSO-Front Ext	Black condensation barrier
37	77	FSO - Front E	Tan Exterior Surfacing
37	78	FSO-Front Exteri	Tan Exterior Surfacing
38	138	OCW - Mechanical Room	Tan Exterior Surfacing
38	79	OCW - Mechanical Room	Pink Tan Gray Terrazzo Floor
39	80	OCW - Mechanical Room	Pink Tan Gray Terrazzo Floor
39	81	OCW - Mechanical Room	Sheetrack
40	82	OCW - Mechanical Room	Sheetrock
40	83	OCW - Mechanical Room	Wallboard
41	84	OCW - Mechanical Room	Wallboard
41	85	OCW - Mechanical Room	White Pipe Insulation with White Wrap
41	86	OCW - Mechanicil Room	White Pipe Insulation with White Wrap
42	87	OCW - Office (Mr. David Sparks)	White Pipe Insulation with White Wrap
42	88	OCW - Office (Mr David Sparks)	2×2 White Ceiling Tile
43	89	OCW - Main Hallway Entrance	2×2 White Ceiling Tile
43	90	OCW - Main Hallway Entrance	Yellow Carpet Glue
4	139	OCW - Main Hallway West Side	Yellow Carpet Glue
44	91	OCW - Main Hallway West Side	2X2 Dot Fissure Celling Tile
45	92	OCW - Main Hallway West Side	2×2 Dot Fissure Ceiling Tile
45	43	OCW - Main Hallway West Side	2X2 Random Dot
46	94	OCW - West Kichenetest Area	2X2 Random Dot
46	45	OCW - West Kichenent	Yellow Insulation with Black Batt
47	96	OCW - West Kichenette Area	Yellow Insulation with Black Batt
47	97	OCW - West Kichenctte Area	Black condensation barrier
48	98	OCW - Electric Meter Room	Black condensation barrier
48	99	OCW - Electric Meter Roon	Gray Striped FT with Yellow Glue
49	101)	OCW - Gas Meter Room	Gray Striped FT with Yellow Glue
49	101	OCW - Gas Meter Room	Light Gray Striped FT with Yellow Glue
			Light Gray Striped FT with Yellow Glue

FSTF - Field Services Technicians Facility
WWO-Water-Wastewater Office
FSO - Field Services Office
OCW- Operations Center \& Warehouse

APPENDIX D -
 FIELD NOTES AND BORING LOGS

Environmental Consuting \& Technology, ho

Project Name: GRU Phase II ESA
Project Number_110059-0100

Project Location: 555 SE $5^{\text {th }}$ Ave, Gainesville, Alachua, County, Florida

Project Manager: Perry Hubbard for Stephanie Emerson
Team Leader: Perry Hubbard
ECT Employees on-site: David Flake
Description of Job to be performed: Install 31 direct push and hand auger borings. Sample for parameters according to the attached proposal. Lead based paint and asbestos surveys will be conducted during the event. Screen soils and visually inspect them for sample selection.

Additional Forms Attached:

Site Maps
\square Other \qquad
Calibration Logs
GW Sampling Logs
Boring Logs
Well Construction Logs

List Any Special Equipment Needed: OVA, Survey equipment, water level indicator 10 cases mason jars.

Date 4-15-11
GRU PHase II
(0)0-650011 $13: 25$
13:30 Sampled so-8 os 8 ore for luch
14:30 Bad fom Iunch Grimdinte potection inter potechion

Began 58. 8 $13: 25$
13:30 Sampled so-8 os 8 ore for luch
14:30 Bual fom Iunch Grumdiate potection gativing Supplies Began $13: 25$
13:30 Sampled so-8 os 8 ore for luch
14:30 Bual fom Iunch Grumdiate potection

4-13-11

110059-0100

$$
\begin{aligned}
& \frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ร } \\
& \text { ㄴํำ }
\end{aligned}
$$

BORING LOG

Borehole Completion (check one):
[Well
[. Grout
[. Bentonite
Backfill
[. Other (describe)

BORING LOG

Borehole Completion (check one): $\quad \mathrm{C}$ Well $\quad \Gamma$ Grout Γ Bentonite Γ Backfill Γ Other (describe)

BORING LOG

Borehole Completion (check one): $\quad \mathrm{L}$ Well Γ Grour $\quad \Gamma$ Bentonite $\quad \Gamma$ Backfill Γ Other (describe)

BORING LOG

Borehole Completion (check one):
L Well
[. Grout
C. Bentonite

Backfill
ᄃ. Other (describe)

BORING LOG

BORING LOG

Borehole Completion (check one): $\quad \square$ Well $\quad \Gamma$ Grout $\quad \Gamma$ Bentonite $\quad \square$ Backfill Γ Other (describe)

BORING LOG

Borehole Completion (check one): $\quad \square$ Well Γ Grout $\quad \square$ Bentonite $\quad \Gamma$ Backfill $\quad[$ Other (describe)

BORING LOG

Borehole Completion (check one): $\quad \Gamma$ Well Γ Grout $\quad \Gamma$ Bentonite $\quad \Gamma$ Other (describe)

Mosture Content Codes: $\mathbf{0}=$ Dry; \mathbf{M} - Most: w Wet: S = saturated

BORING LOG

BORING LOG

BORING LOG

BORING LOG

BORING LOG

BORING LOG

BORING LOG

Borehole Completion (check one):
L Well
I. Grout
[. Bentonite
E Backfill
[. Other (describe)

BORING LOG

Borehole Completion (check one): $\quad \Gamma$ Well Γ Grout Γ Bentonite $\quad \Gamma$ Other (describe)

BORING LOG

BORING LOG

			Page 1 of 1
SB - i	Permit Number:		FDEP Fxeclity Identification Number:
Site Same: GRy Prase En ESA	Borehole Start Date: $4 / 13 / 11$ Borehole S End Date: $4 / 13 / 11$ E		End Time: $15: 45$ Г AM
Environmental Contractor: $E \subset T$	Geologist's Name: PERRY Hubbard		Environmental Technician's Name: David Flake
Drilling Company:Preffered Drill, we ${ }^{\text {Pavement Thickness (inches): }} /$Dilling Methods)		$\|$Borthole Diameter (inches): Borehole Deph (feet) $21 / 4$	
Disposition of Drill Curtings [heck method(s)]: (describe if other or multiple items are checked):			Σ Stockpile Γ Other

BORING LOG

BORING LOG

BORING LOG

Borehole Completion (check one): $\quad \square$ Well Γ Grour $\quad[$ Bentonite $\quad \Gamma$ Other (describe)

BORING LOG

BORING LOG

BORING LOG

BORING LOG

BORING LOG

Borehole Completion (check one): $\quad \Gamma$ Well Γ Grout $\quad \Gamma$ Bentonite $\quad \square$ Other (describe)

BORING LOG

	Permit Number:		
SB-26			FDEP Facility Identification Number:
Site Name: Gry Phase II EsA	Borehole Start Date: $4 / 14 / 11$End Date: $4 / 14 / 11$		Time: 11.17 AM Г PM Time: 1:35 Г. 1 АМ Г PM
Environmental Contractor: $E \subset T$	Geologist's Name: PERRY Hubbard		Environmental Technician's Name: David Flake
			${ }^{\text {Borehole Depth (feet): }}$
Drilling Method(s) Apparati Bo D trom soil mon			OVA (list model and check type): microfid $\nabla_{\text {FID } \Gamma_{\text {pID }}}$
Disposition of Drill Cuttings (check method(s)]: (describe if other or multiple items are checked): C Drum Γ Spread			Σ Stockpile Γ Other

[^33]
BORING LOG

Borehole Completion (check one): $\quad \square$ Well Γ Grout $\quad \Gamma$ Bentonite $\quad \square$ Backfill \quad Other (describe)

BORING LOG

Borehole Completion (check one): $\quad \mathrm{L}$ Well Γ Grout $\quad \Gamma$ Bentonite $\quad \Gamma$ Backfill Γ Other (describe)

BORING LOG

Borehole Completion (check one): $\quad \Gamma$ Well $\quad \Gamma$ Grout $\quad \Gamma$ Bentonite $\quad \Gamma$ Backfill $\quad \Gamma$ Other (describe)

> DEP-SOP-001/01

Form FD 9000-8: FIELD INSTRUMENT CALIBRATION RECORDS INSTRUMENT (MAKEMODEL\#) Micrdid INSTRUMENT\# CZR~ノ/ 14 PARAMETER: [check only one]
\square
temperatureCONDUCTIVITYSALINITY
$\square \mathrm{pH}$ARP \square TURBIDITY \square residual CIDO
-
OTHER
\qquad

STANDARDS: [Specify the types) of standards used for calibration, the origin of the standards, the standard values, and the date the standards were prepared or purchased]

Standard A _100 ppm
Standard B \qquad
Standard C

9645 E. Colonial Dr. Suite 114
Oriando, Florida 32817
CHAIN-OF-CUSTODY RECORD \qquad of \qquad (407) 382-5742 • Fax (407) 382-7195

\qquad
\qquad
(407) 382-5742 • Fax (407) 382-7195

Orlando, Florida 32817 \qquad of
(407) 382-5742 • Fax (407) 382-7195

\qquad of \qquad
(407) 382-5742 • Fax (407) 382-7195

APPENDIX E -

ANALTYICAL LABORATORY REPORTS

Emvirommental Consulting \& Technology, inc.

Alpha Analytics, Inc.

An Environmental Laboratory
9645 E. Colonial Dr. , Suite 114
Orlando, Florida 32817

ALPHA ANALYTICS, INC. REPORT OF ANALYTICAL RESULTS

TO: Perry Hubbard

ECT, Inc.
3701 NW 98th St.
Gainesville, FL 32606
RE: GRU Phase II ESA (110059-0100)
This report contains results of analyses of the samples received under your work I.D. referenced above. The results relate only to these samples and the report may not be reproduced except in full without the written permission of the laboratory. Initial QA/QC information is listed below. More extensive information may be found in the Case Narrative.

NUMBER OF SAMPLES: (15) Soils (3) Groundwaters
DATE OF SAMPLING: 4/13/11
DATE OF RECEIPT IN LAB: 4/14/11
Our laboratory is NELAC certified by the Florida Department of Health, and the results meet all requirements of the NELAC Standards unless clearly noted in the report. Please contact me if you have any questions. We very much appreciate your business. NELAC Certification \#E83806.

John Bowers
Laboratory Director
407-382-5742
(jbowers@alphaanalyticsorlando.com)

ALPHA ANALYTICS REPORT OF QUALITY ASSURANCE/QUALITY CONTROL

CASE NARRATIVE

Client: ECT, Inc.
Project Name, \#: GRU Phase II ESA, 110059-0100
Alpha Analytics ID \#: 11-04-022

1. Samples were received into the laboratory at a temperature of 2 degrees C.
2. Soil sample results are reported on a dry weight basis, unless noted here.
3. A statement of the uncertainty of the results is available on request.
4. All samples were received with sufficient sample volume, within method specific holding times, and in proper method specific containers unless noted here:
5. Metals analysis was performed by Accutest Laboratories Southeast, NELAC \#E83510, and the results are under separate cover.

Randy J. Wesson
Quality Assurance Officer

Client 1.D.
Date Sampled
Date Analyzed
Ditution Factor
Matrix
Units (pob)
\% Moisture

Benzene
Tobene
Ethybenzene
Total xylenes
MTBE
(Sur)Toluene-d8 (\%)
(Surr)4-BFB (\%)

S8-1 08		
1104022-1		
$4 / 13 / 11$		
4/14/11		
1		
Solid		
Ucheg		
11.6		
	MD	$P Q L$
0.60	0.6	5.7
0.70	0.7	5.7
0.74	0.7	5.7
0.54	0.5	5.7
0.64	0.6	5.7

$58-2 @ 8$
11040222
$4 / 13 / 11$
$4 / 14 / 11$
1
5016
$19 / \mathrm{Kg}$
14.7

$0.6 U$
$0.7 U$
$0.7 U$
$0.5 U$
$0.6 U$

MOL	$D Q L$
0.6	5.9
0.7	5.9
0.7	5.9
0.5	59
0.6	5.9

$\begin{aligned} & 58-3 @ 8 \\ & 1104022-3 \end{aligned}$			$\begin{aligned} & \text { SB-4@ } \\ & 1104022-4 \end{aligned}$
4/13/11			$4 / 13 / 11$
$4 / 14 / 11$			4/14/11
1			1
Solid			Solld
velkg			ug/kg
8.09			20.6
	MDL	POL	
$0.5 U$	0.5	5.4	0.64
0.70	0.7	5.4	0.8 U
0.70	0.7	5.4	0.8 U
0.4 U	0.4	5.4	0.5 U
0.5 U	0.5	5.4	0.6 U

$M O$	$D Q L$	$C A S \%$
0.6	6.3	$71-43.2$
0.8	6.3	$108.88-3$
0.8	6.3	$100-414$
0.5	6.3	$1330-20-7$
0.6	6.3	$1634-04-4$

104
97.9
$\frac{\text { Accentable limits }}{70-130 \%}$

SB-8@8			
1104022-10			
4/13/11			
4/14/11			
1			
Solid			
$4 \mathrm{~g} / \mathrm{Kg}$			
18.3			
	$M D L$	POL	CASH
0.6 U	0.6	6.1	71-43-2
0.7 U	0.7	6.1	108-88-3
0.7 U	0.7	6.1	100-41-4
0.5 U	0.5	6.1	1330-20-7
0.6 U	0.5	6.1	1634-04-4
			ceptable Limits
104			70-130\%
97.8			70-130\%

Client I.D.	SB-14 @ 3'
Alpha I.D.	$1104022-11$
Date Sampled	$4 / 13 / 11$
Date Analyzed	$4 / 14 / 11$
Dilution Factor	1
Matrix	Solid
Units (ppo)	$49 / \mathrm{Kg}$
\%o Mosture	4.84
Benzene	0.5 U
Toluene	0.6 U
Ethybenzene	0.6 U
Total xyenes	0.4 U
MTBE	0.5 U
Sur)Toluene-d8 (\%)	106
(Surr)4-BFB (\%)	110

$M D L$	$P Q L$
0.5	5.3
0.6	5.3
0.6	5.3
0.4	5.3
0.5	5.3

SB-13 @ 9
$1104022-12$
$4 / 13 / 11$
$4 / 14 / 11$
1
Solid
ug/Kg
15.2

$0.6 U$
$0.7 U$
$0.7 U$
$0.5 U$
$0.6 U$

106
109

		SB
		1104022-13
		4/13/11
		$4 / 14 / 11$
		1
		Solid
		$4 \mathrm{~m} / \mathrm{Kg}$
		15.6
MDL	PQL	
0.6	5.9	0.6 U
0.7	5.9	0.7 U
0.7	5.9	0.7 U
0.5	5.9	0.5 U
0.6	5.9	0.6 U
		106
		108

The qualifer "L" denotes the value reported is above the calbration range. The actual value may be higher than the value giver.
he qualfer "I" denotes that the reported value is between the MOL (Method Detection Limit) and the PQL (Practical Quantitaton Limit). the qualifier "U" denotes that the analyte was not present, and the value preceding the "U" is the MDL
Per FDEP recommendation, DI water is used instead of sodium bisulate in low-fevel soil vials

Client 1.D.	S8-17 © 4			Method Blank			
Alphat ID.	1104022-17			1104022-20			
Date Sampled	4/13/11			NA			
Date Analyzed	4/14/11			4/14/11			
Dilution Factor	1			1			
Matrix	Sold			Solid			
Units (ppo)	ug/Kg			$u g / \mathrm{Kg}$			
\% Mosture	7.95			NA			
		MOL	POL		MD	POL	CAS
Benzene	0.50	0.5	5.4	0.50	0.5	5.0	71-43-2
Toluene	0.70	0.7	5.4	0.60	0.6	5.0	108-88-3
Ethybenzene	0.70	0.7	5.4	0.50	0.6	5.0	100-41-4
Total xylenes	0.40	0.4	5.4	0.40	0.4	5.0	$1330 \cdot 20.7$
MTBE	0.6 U	0.5	5.4	0.54	0.5	5.0	1634-04-4
(Surr)Tokene-d8 (\%)	105						Acceptable limits
(Sur)4-BFB (\%)	107			102			70-130\%

The qualifer " L " denotes that the reported value is above the calibration range. The actual value may be higher than the value given.
The qualtier " denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit)
The qualfier "U" denotes that the analvte was not present, and the value preceding the "U" is the MDL.
Per FDEP recommendation, DI water is used instead of sodium bisulfate in low-level soll vials

- Ilent I.D.	SB-5 @ 8'			SB-6			SB-7@8			SB-8			
- Mipha I.D.	$1104022 \cdot 6$			1104022			1104022-8			1104022			
Date Sampled	4/13/11			4/13/11			4/13/11			$4 / 13$			
Date Analyzed	4/14/11			4/14/11			4/14/11			4/13/1/11			
Dilution Factor	1			1			1 1						
Matrix	Solid			Sold			solid			Solld			
Units (ppb)	$4 \mathrm{~g} / \mathrm{Kg}$			wg/ Kg			$u g / \mathrm{Kg}$			ug/k			
\% Moisture	17.4			37.6			15.5			18.3			
		MDL	POL		MDL	pol		MD	POL		MDI	POL	C45 \%
1,1- Dichloroethane	0.50	0.5	6.1	0.6 U	0.6	8.0	0.5 U	0.5	5.9	0.5 U			
1,1- Dichloroethene	0.60	0.6	6.1	0.8 U	0.8	8.0	0.64	0.6	5.9	0.50	0.5	6.1	75-34-3
1,1,1-Trichoroethane	0.8 U	0.8	6.1	1.14	1.1	8.0	0.80	0.8	5.9	0.9 U	0.6	6.1	75-35-4
1,1,1,2-Tetrachloroethane	0.64	0.6	6.1	$0.8 \cup$	0.8	8.0	0.64	0.6	5.9	0.9 U	0.9 0.6	6.1 6.1	71-55-6
1,1,2,2-Tetrachloroethane	0.60	0.6	6.1	0.80	0.8	8.0	0.5 U	0.6	5.9	0.6 U	0.6	6.6	630-20-6
1,1,2-Trichloroethane	0.70	0.7	6.1	1.00	1.0	8.0	0.7 U	0.7	5.9	0.70	0.6	6.1	79.34-5
1,1-Dichloropropene	0.70	0.7	6.1	1.04	1.0	8.0	0.70	0.7	5.9	0.7 U	0.7	6.1	563-58-6
1,2-Dichloroethane	0.5 U	0.5	6.1	0.6 U	0.6	8.0	0.5 U	0.5	5.9	0.50	0.5	6.1	563-58-6 $10706-2$
1,2-Dichioropropane	0.60	0.6	6.1	0.8 U	0.8	8.0	0.60	0.6	5.9	0.60	0.5	6.1	$107-06-2$ $78-87-5$
1,2,3-Ttichlorobenzene	0.70	0.7	6.1	1.04	1.0	8.0	0.7 U	0.7	5.9	0.70	0.7	6.1	87-61-6
1,2,4-Trimethybenzene	0.70	0.7	6.1	1.00	1.0	8.0	0.74	0.7	5.9	0.70	0.7	6.1	$95-63-6$
1,2-Dichlorobenzene	0.8 U	0.8	6.1	1.1 U	1.1	8.0	0.8 U	0.8	5.9	0.9 U	0.9	6.1	95-50-1
1,3,5-Trimethylbenzene	0.80	0.8	6.1	1.10	1.1	8.0	0.8 U	0.8	5.9	0.9 U	0.9	6.1	108-67-8
1,3-Dichlorobenzene	0.6 U	0.6	6.1	0.8 U	0.8	8.0	0.6 U	0.6	5.9	0.6 U	0.6	6.1	108-67-8
1,3-Dichloropropane	0.6 U	0.6	6.1	0.8 U	0.8	8.0	0.6 U	0.6	5.9	0.6 U	0.6	6.1	$540-73-1$ $142-28-9$
1,4-Dichlorobenzene	1.0 U	1.0	6.1	1.3 U	1.3	8.0	0.9 U	0.9	5.9	1.0 U	1.0	6.1	$142-28-9$ $106-46-7$
2-Chiorotoluene	0.8 U	0.8	6.1	1.10	1.1	8.0	0.8 U	0.8	5.9	0.9 U	0.9		$106-46-7$ $95-49-8$
2,2-Dichloropropane	0.5 U	0.5	6.1	0.6 U	0.6	8.0	0.5 U	0.5	5.9	0.5 U	0.9	6.1	$95-49-8$ $594-20-7$
Benzene	$0.6 \cup$	0.6	6.1	$0.8 \cup$	0.8	8.0	0.6 U	0.6	5.9	0.6 U	0.6	6.1	$594-20-7$ $71-43-2$
Bromobenzene	0.5 U	0.5	6.1	0.60	0.6	8.0	0.5 U	0.5	5.9	0.5 U	0.5	6.1	108-43-2
Bromochloromethane	0.7 U	0.7	6.1	1.0 U	1.0	8.0	0.70	0.7	5.9	0.7 U	0.7	6.1	108-86-1
Bromodichloromethane	0.5 U	0.5	6.1	0.6 U	0.6	8.0	0.5 U	0.5	5.9	0.5 U	0.5	6.1	74-97-5 $75-27-4$
Bromoform	0.6 U	0.6	6.1	0.8 U	0.8	8.0	0.60	0.6	5.9	0.6 U	0.6	6.1	75-25-2
Bromomethane	1.20	1.2	6.1	1.6 U	1.6	8.0	1.2 U	1.2	5.9	1.2 U	1.2		75-25-2
c-1,2-Dichloroethene	0.5 U	0.5	6.1	0.6 U	0.6	8.0	0.5 U	0.5	5.9	0.5 U	1.2	6.1	14-83-9
Carbon tetrachloride	0.50	0.5	6.1	0.6 U	0.6	8.0	0.5 U	0.5	5.9	0.5 U	0.5	6.1	$156-59-2$ $56-23-5$
205: Chlorobenzene	0.6 U	0.6	6.1	0.8 U	0.8	8.0	0.6 U	0.6	5.9	0.6 U	0.6	6.1	$56-23-5$ $108-90-7$
רoroethane	1.50	1.5	6.1	1.9 U	1.9	8.0	1.4 U	1.4	5.9	1.5 U	1.5	6.1	$175-00-3$
S hloroform	0.7 U	0.7	6.1	1.0 U	1.0	8.0	0.7 U	0.7	5.9	0.7 U	0.7	6.1	67-66-3
Chloromethane	1.1 U	1.1	6.1	1.4 U	1.4	8.0	1.1 U	1.1	5.9	1.1 U	1.1	6.1	74-87-3
cis-1,3-Dichloropropene	0.5 U	0.5	6.1	0.6 U	0.6	8.0	0.5 U	0.5	5.9	0.5 U	0.5	6.1	10061-01-5
Dibromochloromethane	0.6 U	0.6	6.1	0.8 U	0.8	8.0	0.6 U	0.6	5.9	0.6 U	0.6	6.1	124-48-1
Dichlorodifluoromethane Ethybenzene	1.3 U 0.7 U	1.3 0.7	6.1	1.8 U 1.0 U	1.8 1.0	8.0	1.3 U	1.3	5.9	1.3 U	1.3	6.1	75-71-8
Isopropylbenzene	0.6 U	0.6	6.1	1.0 U	1.0	8.0 8.0	0.7 U 0.6 U	0.7	5.9	0.7 U	0.7	6.1	100-41-4
Methylene chloride	0.8 U	0.8	6.1	1.10	1.1	8.0	0.6 U	0.6 0.8	5.9 5.9	0.6 U 0.9 U	0.6	6.1	98-82-8
MTBE	0.6 U	0.6	6.1	0.8 U	0.8	8.0	0.6 U	0.6	5.9	0.6 U	0.9	6.1	75-09-2 $1634-04-4$
Naphthalene	0.6 U	0.6	6.1	0.8 U	0.8	8.0	0.60	0.6	5.9	0.6 U	0.0	6.1	$1634-044$
n-Butylbenzene.	1.0 U	1.0	6.1	1.3 U	1.3	8.0	0.9 U	0.6	5.9 5.9	1.0 U	0.6 1.0	6.1	91-20-3
n-Propylbenzene	0.70	0.7	6.1	1.00	1.0	8.0	0.70	0.7	5.9	0.7 U	0.7	6.1	104-51-8
p-Isopropyltoluene	0.7 U	0.7	6.1	1.0 U	1.0	8.0	0.7 U	0.7	5.9	0.70	0.7	6.1	$\begin{gathered} 103-65-1 \\ 99-87-6 \end{gathered}$
sec -Butybenzene	0.74	0.7	6.1	1.00	1.0	8.0	0.7 U	0.7	5.9	0.7 U	0.7	6.1	99-87-6 $135-98-8$
Styrene	0.5 U	0.5	6.1	0.6 U	0.6	8.0	0.5 U	0.5	5.9	0.5 U	0.5	6.1	100-42-5
tert-Butylbenzene	0.6 U	0.6	6.1	0.8 U	0.8	8.0	0.6 U	0.6	5.9	0.6 U	0.6	6.1	-98-06-6
Tetrachioroethene	0.7 U	0.7	6.1	1.0 U	1.0	8.0	0.7 U	0.7	5.9	0.7 U	0.7	6.1	128-18-4
Toluene	0.7 U	0.7	6.1	1.04	1.0	8.0	0.70	0.7	5.9	0.7 U	0.7	6.1	108-88-3
tr-1,2-Dichloroethene	1.04	1.0	6.1	1.30	1.3	8.0	0.9 U	0.9	5.9	1.0 U	1.0	6.1	156-60-5
tr-1,3-Dichloropropene	0.6 U	0.6	6.1	0.8 U	0.8	8.0	0.6 U	0.6	5.9	0.6 U	0.6	6.1	10061-02-6
Trichlorofuoromethane	0.60	0.5	6.1	0.60	0.6	8.0	0.54	0.5	5.9	0.5 U	0.5	6.1	79-01-6
Vinyl choride	0.70	0.7	6.1	1.04	1.0	8.0	0.50 0.74	0.6	5.9	0.6 U	0.6	6.1	75-69-4
Total xylenes	$0.5 U$	0.5	6.1	0.6 U	0.6	8.0	0.50	0.5	5.9 5.9	0.5 U 0.5 U	0.5	6.1	$\begin{gathered} 75-01-4 \\ 1330-20-7 \end{gathered}$
(Surr)Toluened8 (\%)	104			104									eptable limit
(Surr)4-BFB (\%)	102			93.5			95.1			$\begin{array}{r} 104 \\ 97.8 \end{array}$			$\begin{aligned} & 70-130 \% \\ & 70-130 \% \end{aligned}$

The qualifier "L" denotes that the reported value is above the calibration range. The actual value may be higher than the value given,
The qualfier "I" denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit),
The qualifier " U " denotes that the analyte was not present, and the value preceding the " U " is the MDL
Per FDEP recommendation, D: water is used instead of sodum blsulfate in low-level soil vials

[^34]| Mient I.D. | SB-17 @ 4^{\prime} | Method Blank | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - Mpha L.D. | 1104022-17 | 1104022-20 | | | | | |
| Date Sampled | 4/13/11 | NA | | | | | |
| Date Analyzed | 4/14/11 | 4/14/1苂 | | | | | |
| Dilution Factor | 1 | 1 | | | | | |
| Matrix | sold | Solid | | | | | |
| Units (ppb) | $u \mathrm{~g} / \mathrm{Kg}$ | ug/kg | | | | | |
| \% Moisture | 7.95 | MOS | NA | | | POL | |
| | | | PQL | | MOL | | CAS H |
| 1,1- Dichboroethane | 0.40 | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | 75-34-3 |
| 1,1- Dichloroethene | 0.5 U | 0.5 | 5.4 | 0.50 | 0.5 | 5.0 | 75-35-4 |
| 1,1,1-Trichloroethane | $0.8 \cup$ | 0.8 | 5.4 | 0.70 | 0.7 | 5.0 | 71.55-6 |
| 1,1,1,2-Tetrachioroethane | 0.50 | 0.5 | 5.4 | 0.54 | 0.5 | 5.0 | 630-20-6 |
| 1,1,2,2-Tetrachoroethane | 0.5 U | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 79.345 |
| 1,1,2-Trichoroethane | 0.70 | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 79-00-5 |
| 1,1-Dichloropropene | 0.70 | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 563-58-6 |
| 1,2-Dichloroethane | 0.4 U | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | 107-06-2 |
| 1,2-Dichioropropane | 0.5 U | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 78-87-5 |
| 1,2,3-Trichiorobenzene | 0.70 | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 87-61-6 |
| 1,2,4-Trimethybenzene | 0.70 | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 95-63-6 |
| 1,2-Dichlorobenzene | 0.8 U | 0.8 | 5.4 | 0.7 U | 0.7 | 5.0 | 95-50-1 |
| 1,3,5-Trimethybenzene | 0.8 U | 0.8 | 5.4 | 0.7 U | 0.7 | 5.0 | 108-67-8 |
| 1,3-Dichlorobenzene | 0.5 U | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 540-73-1 |
| 1,3-Dichloropropane | 0.50 | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 142-28-9 |
| 1,4-Dichlorobenzene | 0.9 U | 0.9 | 5.4 | 0.8 U | 0.8 | 5.0 | 106-46-7 |
| 2-Chlorotoluene | 0.8 U | 0.8 | 5.4 | 0.7 U | 0.7 | 5.0 | 95-49-8 |
| 2,2-Dichloropropane | 0.4 U | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | 594-20-7 |
| Benzene | 0.5 U | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 71-43-2 |
| Bromobenzene | 0.4 U | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | 108-86-1 |
| Bromochloromethane | 0.70 | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 74-97-5 |
| Bromodichloromethane | 0.4 U | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | 75-27-4 |
| Bromoform | 0.5 U | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 75-25-2 |
| Bromomethane | 1.14 | 1.1 | 5.4 | 1.0 U | 1.0 | 5.0 | 74-83-9 |
| $\mathrm{c}-1,2$-Dichloroethene | 0.4 U | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | 156-59-2 |
| Carbon tetrachloride | 0.4 U | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | 56-23-5 |
| 4x. Chiorobenzene | 0.5 U | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 108-90-7 |
| - Whoroethane | 1.3 U | 1.3 | 5.4 | 1.2 U | 1.2 | 5.0 | 75-00-3 |
| - Whloroform | 0.7 U | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 67-66-3 |
| Chioromethane | 1.0 U | 1.0 | 5.4 | 0.9 U | 0.9 | 5.0 | 74-87-3 |
| cis-1,3-Dichloropropene | 0.4 U | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | 10061-01-5 |
| Dibromochloromethane | 0.50 | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 124-48-1 |
| Dichlorodifluoromethane | 1.2 U | 1.2 | 5.4 | 1.10 | 1.1 | 5.0 | 75-71-8 |
| Ethylbenzene | $0.7 U$ | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 100-41-4 |
| Isopropylbenzene | 0.50 | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 98-82-8 |
| Methylene chloride | 0.8 U | 0.8 | 5.4 | 0.7 U | 0.7 | 5.0 | 75-09-2 |
| MTBE | 0.5 U | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 1634-04-4 |
| Naphthalene | 0.5 U | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | 91-20-3 |
| n-Butybenzene | 0.9 U | 0.9 | 5.4 | 0.8 U | 0.8 | 5.0 | 104-51-8 |
| n-Propylbenzene | 0.7 U | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 103-65-1 |
| p-isopropyltoluene | 0.7 U | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 99-87-6 |
| sec-Butybenzene | 0.74 | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | 135-98-8 |
| Styrene | 0.40 | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | $100-42-5$ |
| tert-Butybenzene | 0.5 U | 0.5 | 5.4 | 0.5 U | 0.5 | 5.0 | $98-06-6$ |
| Tetrachloroethene | $0.7 U$ | 0.7 | 5.4 | 0.64 | 0.6 | 5.0 | 127-18-4 |
| Toluene | 0.74 | 0.7 | 5.4 | 0.6 U | 0.6 | 5.0 | $108-88-3$ |
| tr-1,2-Dichloroethene | 0.9 U | 0.9 | 5.4 | 0.8 U | 0.8 | 5.0 | 156-60-5 |
| tr-1,3-Dichloropropene | 0.5 U | 0.5 | 5.4 | 0.50 | 0.5 | 5.0 | 10061-02-6 |
| Trichloroethene | 0.4 U | 0.4 | 5.4 | 0.4 U | 0.4 | 5.0 | 79-01-6 |
| Trichlorofuoromethane | 0.50 | 0.5 | 5.4 | 0.50 | 0.5 | 5.0 | 75-69-4 |
| Vinyl chloride | 0.70 | 0.7 | 5.4 | 0.60 | 0.6 | 5.0 | 75-01-4 |
| Total xylenes | 0.40 | 0.4 | 5.4 | 0.40 | 0.4 | 5.0 | 1330-20-7 |
| (Surr)Toluened8 (\%) | 102 | | | 103 | | | $\frac{\text { ceptable lim }}{70-130 \%}$ |
| (Surr)4-BFB (\%) | 105 | | | 105 | | | 70-130\% |

[^35]Alpha Analytics, Inc. (407) 382-5742 NELAP \#E83806

EPA 3510/8310

Client I. ${ }^{\text {d. }}$	SB-1@ ${ }^{\text {8 }}$			SB-2 @ 8^{\prime}			SB-3 @ 8'		
Alpha 1.D.	1104022-1			1104022-2			1104022-3		
Date Sampled	4/13/11			4/13/11			4/13/11		
Date Extracted	4/14/11			4/14/11			4/14/11		
Date Analyzed	4/14/11			4/14/11			4/14/11		
Dilution Factor	1			1			1		
Matrix	Solld			Solid			Solid		
Units	$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{kg}$			$\mathrm{mg} / \mathrm{Kg}$		
Percent Moisture	11.6	MOL	POL	14.7	$M D L$	$P Q L$	8.09	MDL	POL
Naphthalene	0.007 U	0.007	0.03	0.007 U	0.007	0.03	0.007 U	0.007	0.03
Acenaphthylene	0.005 U	0.005	0.03	0.005 U	0.005	0.03	0.004 U	0.004	0.03
1-Methylnaphthalene	0.007 U	0.007	0.03	0.007 U	0.007	0.03	0.007 U	0.007	0.03
2-Methylnaphthalene	0.005 U	0.005	0.03	0.005 U	0.005	0.03	0.004 U	0.004	0.03
Acenaphthene	0.01 U	0.01	0.03	0.01 U	0.01	0.03	0.01 U	0.01	0.03
Fluorene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Phenanthrene	0.003 U	0.003	0.03	0.004 U	0.004	0.03	0.003 U	0.003	0.03
Anthracene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Fluoranthene	0.003 U	0.003	0.003	0.004 U	0.004	0.003	0.003 U	0.003	0.003
Pyrene	0.003 U	0.003	0.003	0.004 U	0.004	0.003	0.003 U	0.003	0.003
Benzo(a)anthracene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.01	0.002	0.003
Chrysene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Benzo(b)fluoranthene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Benzo(k)fluoranthene	0.002 U	0.002	0.002	0.002 U	0.002	0.002	0.01	0.002	0.002
Benzo(a)pyrene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Dibenzo(a,h)anthracene	0.003 U	0.003	0.003	0.004 U	0.004	0.003	0.009	0.003	0.003
Benzo(g, h, i)perylene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Indeno($1,2,3-c_{r}$ d)pyrene	0.003 U	0.003	0.003	0.004 U	0.004	0.003	0.003 U	0.003	0.003
urrogate \% Recovery									
p-Terphenyl-d14	77.6			75.5			83.7		

NR denotes that the surrogate recovery is not repontable due to matrix interference.
The qualffer "L" denotes that the value reported is above the calbration curve.
he qualtier " i " denotes that the reported value is between the MOL (Method Detection Limit) and the PQL (Practical Quantitation Limit). The qualifer " U " denotes that the analyte was not detected, and the value preceding the " U " is the MDL.
Surrogate \% Recovery limits are: p-Terphenyl 66.1-120.

Client I.D.	SB-4@ ${ }^{\prime}$			SB-5 @ 8'			SB-6 @ 8'		
Alpha I.D.	1104022-4			1104022-6			1104022-7		
Date Sampled	4/13/11			4/13/11			4/13/11		
Date Extracted	4/14/11			4/14/11			4/14/11		
Date Analyzed	4/14/11			4/14/11			4/14/11		
Dilution Factor	1			1			1		
Matrix	Solid			Solid			Solid		
Units	$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{Kg}$		
Percent Moisture	20.6	MOL	POL	17.4	MDL	PQ	37.6	MOL	PQL
Naphthaiene	0.008 U	0.008	0.03	0.007 U	0.007	0.03	0.01 U	0.010	0.03
Acenaphthylene	0.005 U	0.005	0.03	0.005 U	0.005	0.03	0.006 U	0.006	0.03
1-Methylnaphthalene	0.008 U	0.008	0.03	0.007 U	0.007	0.03	0.46	0.010	0.03
2-Methyinaphthalene	0.005 U	0.005	0.03	0.005 U	0.005	0.03	0.006 U	0.006	0.03
Acenaphthene	0.01 U	0.01	0.03	0.01 U	0.01	0.03	$0.01 \cup$	0.01	0.03
Fluorene	0.003 U	0.003	0.03	0.002 U	0.002	0.03	0.14	0.003	0.03
Phenanthrene	0.004 U	0.004	0.03	0.004 U	0.004	0.03	0.005 U	0.005	0.03
Anthracene	0.003 U	0.003	0.03	0.002 U	0.002	0.03	0.003 U	0.003	0.03
Fluoranthene	0.004 U	0.004	0.003	0.05	0.004	0.003	0.05	0.005	0.003
Pyrene	0.004 U	0.004	0.003	0.02	0.004	0.003	0.005 U	0.005	0.003
Benzo(a)anthracene	0.003 U	0.003	0.003	0.01	0.002	0.003	0.11	0.003	0.003
Chrysene	0.003 U	0.003	0.003	0.11	0.002	0.003	0.02	0.003	0.003
Benzo(b)fluoranthene	0.003 U	0.003	0.003	0.01	0.002	0.003	0.03	0.003	0.003
Benzo(k)fluoranthene	0.003 U	0.003	0.002	0.08	0.002	0.002	0.003 U	0.003	0.002
Benzo(a)pyrene	0.003 U	0.003	0.003	0.02	0.002	0.003	0.003 U	0.003	0.003
Dibenzo(a, h)anthracene	0.004 U	0.004	0.003	0.02	0.004	0.003	0.005 U	0.005	0.003
Benzo(g, h,i)perylene	0.003 U	0.003	0.003	0.002 U	0.002	0.003	0.003 U	0.003	0.003
Indeno($1,2,3-c, d)$ pyrene	0.004 U	0.004	0.003	0.004 U	0.004	0.003	0.005 U	0.005	0.003
urrogate \% Recovery									
p-Terphenyl-d14	83.1			76.6			64.7		

EPA $3510 / 8310$

Client I.D.	SB-7 @ 8*			SB-8 @ 8'			SB-14@		
Alpha I.D.	1104022-8			1104022-10			1104022-1		
Date Sampled	4/13/11			4/13/11			4/13/11		
Date Extracted	4/14/11			4/14/11			4/14/11		
Date Analyzed	4/14/11			4/14/11			4/14/11		
Dilution Factor	1			1			1		
Matrix	Solid			Solid			Solid		
Units	$\mathrm{mg} / \mathrm{kg}$			$\mathrm{mg} / \mathrm{kg}$			$\mathrm{mg} / \mathrm{Kg}$		
Percent Moisture	15.5	MDL	PQL	18.3	MOL	POL	4.84	MDL	PQL
Naphthalene	0.007 U	0.007	0.03	0.007 U	0.007	0.03	0.006 U	0.006	0.03
Acenaphthylene	0.005 U	0.005	0.03	0.005 U	0.005	0.03	0.004 U	0.004	0.03
1-Methylnaphthalene	0.18	0.007	0.03	0.007 U	0.007	0.03	0.006 U	0.006	0.03
2-Methylnaphthalene	0.005 U	0.005	0.03	0.005 U	0.005	0.03	0.004 U	0.004	0.03
Acenaphthene	0.01 U	0.01	0.03	0.01 U	0.01	0.03	0.01 U	0.01	0.03
Fluorene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Phenanthrene	0.004 U	0.004	0.03	0.004 U	0.004	0.03	0.003 U	0.003	0.03
Anthracene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Fluoranthene	0.004 U	0.004	0.003	0.05	0.004	0.003	0.003 U	0.003	0.003
Pyrene	0.004 U	0.004	0.003	0.004 U	0.004	0.003	0.003 U	0.003	0.003
Benzo(a)anthracene	0.002 U	0.002	0.003	0.40 L	0.002	0.003	0.002 U	0.002	0.003
Chrysene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Benzo(b)fluoranthene	0.06	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Benzo(k)fluoranthene	0.002 U	0.002	0.002	0.002 U	0.002	0.002	0.002 U	0.002	0.002
Benzo(a)pyrene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Dibenzo(a,h)anthracene	0.004 U	0.004	0.003	0.004 U	0.004	0.003	0.003 U	0.003	0.003
Benzo(g , h, i) perylene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Indeno($1,2,3-\mathrm{c}$ d) p prene	0.004 U	0.004	0.003	0.004 U	0.004	0.003	0.003 U	0.003	0.003
urrogate \% Recovery									
p -Terphenyl-d14	103			82.7			83.4		

[^36]The qualfier " " denotes that the value reported is above the calbration curve
Whe qualfier " denotes that the reported value is between the MOL (Method Detection Limit) and the PQL (Practical Quantation Limit) Whe qualfier "U" denotes that the anatyte was not detected, and the vaue preceding the "y" is the MOL
Surogate \% Recovery limits are: p-Terphenyl 60.1-120

Client I.D.

Alpha I.D.
Date Sampled
Date Analyzed
Dilution Factor
Matrix
Units
Percent Moisture
Naphthalene
Acenaphthylene
1-MethyInaphthalene
2-MethyInaphthalene
Acenaphthene
Fluorene
Phenanthrene
Anthracene
Fluoranthene
Pyrene
Benzo(a)anthracene
Chrysene
Benzo(b)fluoranthene
Benzo(k)fluoranthene
Benzo(a)pyrene
Dibenzo(a,h)anthracene
Benzo(g, h, i) perylene
Indeno(1,2,3-c,d)pyrene
urrogate \% Recovery
p-Terphenyl-d14

s8-13 @ 5		
$1104022 \cdot 12$		
$4 / 13 / 11$		
$4 / 14 / 11$		
$4 / 14 / 11$		
1		
Sold		
mg/kg		
15.2	$M 01$	
0.007 U	0.007	0.03
0.005 U	0.005	0.03
0.007 U	0.007	0.03
0.005 U	0.005	0.03
0.01 U	0.01	0.03
0.002 U	0.002	0.03
0.004 U	0.004	0.03
0.002 U	0.002	0.03
0.004 U	0.004	0.003
0.004 U	0.004	0.003
0.002 U	0.002	0.002
0.002 U	0.002	0.003
0.004 U	0.004	0.003
0.002 U	0.002	0.003
0.004 U	0.004	0.003

SB-15 @ 6'		
$1104022-13$		
$4 / 13 / 11$		
$4 / 14 / 11$		
$4 / 14 / 11$		
1		
Solid		
mg/Kg		
15.6	$M 0 L$	$P 02$
0.007 U	0.007	0.03
0.005 U	0.005	0.03
0.007 U	0.007	0.03
0.005 U	0.005	0.03
0.01 U	0.01	0.03
0.002 U	0.002	0.03
0.004 U	0.004	0.03
0.002 U	0.002	0.03
0.004 U	0.004	0.003
0.004 U	0.004	0.003
0.002 U	0.002	0.002
0.002 U	0.002	0.003
0.004 U	0.004	0.003
0.002 U	0.002	0.003
0.004 U	0.004	0.003

66.1

SB-16 @ 6"		
$1104022-14$		
$4 / 13 / 11$		
$4 / 14 / 11$		
$4 / 14 / 11$		
1		
Solld		
$\mathrm{mg} / \mathrm{Kg}$		
13.2	$M 01$	0.2
0.007 U	0.007	0.03
0.005 U	0.005	0.03
0.007 U	0.007	0.03
0.005 U	0.005	0.03
0.01 U	0.01	0.03
0.002 U	0.002	0.03
0.003 U	0.003	0.03
0.002 U	0.002	0.03
0.003 U	0.003	0.003
0.003 U	0.003	0.003
0.002 U	0.002	0.002
0.002 U	0.002	0.003
0.003 U	0.003	0.003
0.002 U	0.002	0.003
0.003 U	0.003	0.003
81.3		

NR denotes that the surrogate recovery is not reportable due to matrix interference.
The qualifier "L" denotes that the value repoted is above the calibration curve.
The qualfier "?" denotes that he reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit)
The qualifier "U" denotes that the analyte was not detected, and the value preceding the " 4 " is the MDL
arrogate \% Recovery limits are: p-Terpheny" 66.1-120.

Client I.D.	SB-16 © 6^{\prime}			SB-17@ $6^{\prime \prime}$			SB-17@ $4^{\text {a }}$		
Alpha 1.D.	1104022-15			1104022-16			1104022-17		
Date Sampled	4/13/11			4/13/11			4/13/11		
Date Extracted	4/14/11			4/14/11			4/14/11		
Date Analyzed	4/14/11			4/14/11			4/14/11		
Dilution Factor	1			1			1		
Matrix	Solld			Solid			Solid		
Units	$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{kg}$		
Percent Moisture	15.7	$M D L$	PQL	8.09	MDL	EQL	7.95	MDL	PQL
Naphthalene	0.007 U	0.007	0.03	0.007 U	0.007	0.03	0.007 U	0.007	0.03
Acenaphthylene	0.005 U	0.005	0.03	0.004 U	0.004	0.03	0.004 U	0.004	0.03
1-Methyinaphthalene	0.007 U	0.007	0.03	0.007 U	0.007	0.03	0.007 U	0.007	0.03
2-Methylnaphthalene	0.005 U	0.005	0.03	0.004 U	0.004	0.03	$0,004 \mathrm{U}$	0.004	0.03
Acenaphthene	0.01 U	0.01	0.03	0.09	0.01	0.03	0.01 U	0.01	0.03
Fluorene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Phenanthrene	0.004 U	0.004	0.03	0.003 U	0.003	0.03	0.003 U	0.003	0.03
Anthracene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Fluoranthene	0.004 U	0.004	0.003	0.07	0.003	0.003	0.003 U	0.003	0.003
Pyrene	0.004 U	0.004	0.003	0.05	0.003	0.003	0.003 U	0.003	0.003
Benzo(a)anthracene	0.06	0.002	0.003	0.02	0.002	0.003	0.002 U	0.002	0.003
Chrysene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Benzo(b)fluoranthene	0.002 U	0.002	0.003	0.16	0.002	0.003	0.002 U	0.002	0.003
Benzo(k)fluoranthene	0.002 U	0.002	0.002	0.03	0.002	0.002	0.002 U	0.002	0.002
Benzo(a)pyrene	0.002 U	0.002	0.003	0.10	0.002	0.003	0.002 U	0.002	0.003
Dibenzo(a, h anthracene	0.004 U	0.004	0.003	0.003 U	0.003	0.003	0.003 U	0.003	0.003
Benzo($(\mathrm{g}, \mathrm{h}, \mathrm{i})$ perylene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Indeno(1,2,3-c,d)pyrene	0.004 U	0.004	0.003	0.003 U	0.003	0.003	0.003 U	0.003	0.003
urrogate \% Recovery									
p-Terphenyl-d14	90.5			83.7			92.7		

[^37]

[^38]| Client I.D. | SB-1 @ 8' | | SB-2 @ 8 | | SB-3 @ 8' | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alpha I.D. | 1104022-1 | | 1104022-2 | | 1104022-3 | |
| Date Sampled | 4/13/11 | | 4/13/11 | | 4/13/11 | |
| Date Extracted | 4/14/11 | | 4/14/11 | | 4/14/11 | |
| Date Analyzed | 4/14/11 | | 4/14/11 | | 4/14/11 | |
| Dilution Factor | 1 | | 1 | | 1 | |
| Matrix | Solid | | Solid | | Solid | |
| Units | $\mathrm{mg} / \mathrm{Kg}$ | | $\mathrm{mg} / \mathrm{Kg}$ | | $\mathrm{mg} / \mathrm{Kg}$ | |
| Percent Moisture | 11.6 | | 14.7 | | 8.09 | |
| MDL. | 3.4 | | 3.5 | | 3.3 | |
| | POL | | PQL | | POL | |
| Total Petroleum Hydrocarbons | 7.41 | 9.0 | 3.5 U | 9.0 | 3.3 U | 9.0 |
| Surrogate \% Recovery | | | | | | |
| OTP | 91.1 | | 97.0 | | 89.9 | |
| C39/ Nonatriacontane | 98.1 | | 94.6 | | 85.6 | |

Client I.D.	SB-4 @ 6'		SB-5 @ 8'		SB-6 @ 8'	
Alpha I.D.	1104022-4		1104022-6		1104022-7	
Date Sampled	4/13/11		4/13/11		4/13/11	
Date Extracted	4/14/11		4/14/11		4/14/11	
Date Analyzed	4/14/11		4/14/11		4/14/11	
Dilution Factor	1		1		1	
Matrix	Solid		Solid		Solid	
Units	$\mathrm{mg} / \mathrm{kg}$		$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$	
Percent Moisture	20.6		17.4		37.6	
MDL	3.8		3.6		4.8	
		PQL		$\underline{P Q L}$		PQL
Total Petroleum Hydrocarbons	3.8 U	9.0	11	9.0	28	9.0
Surrogate \% Recovery						
OTP	98.1		96.9		94.2	
C39/ Nonatriacontane	88.6		97.5		87.5	
Client I.D.	SB-7 @ 8'		SB-8 @ 8'		SB-14 @ 3'	
Alpha I.D.	1104022-8		1104022-10		1104022-11	
Date Sampled	4/13/11		4/13/11		4/13/11	
Date Extracted	4/14/11		4/14/11		4/14/11	
Date Analyzed	4/14/11		4/14/11		4/14/11	
Dilution Factor	1		1		1	
Matrix	Solid		Solid		Solid	
Units	$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$	
Percent Moisture	15.5		18.3		4.84	
MOL	3.6		3.7		3.2	
		PQL		POL		PQL
Total Petroleum Hydrocarbons	3.6 U	9.0	11	9.0	3.2 U	9.0
Surrogate \% Recovery						
OTP	90.4		99.2		94.6	
C39/Nonatriacontene	95.5		90.5		98.5	

NR denotes that the surrogate recovery is not reportabie due to matrix interference.
The qualfier "L" denotes that the value reported is above the calbration curve.
The qualifer "I" denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit).
The qualfier " U " denotes that the analyte was not detected, and the value preceding the " U " is the MOL
Surrogate \% Recovery limits are: OTP 62-109 and C-39 60-118.

Client I.D.	SB-13 @ 5'		SB-15 @ $6^{\text {' }}$		SB-16 @ 6'	
Alpha I.D.	1104022-12		1104022-13		1104022-15	
Date Sampled	4/13/11		4/13/11		4/13/11	
Date Extracted	4/14/11		4/14/11		4/14/11	
Date Analyzed	4/14/11		4/14/11		4/14/11	
Dilution Factor	1		1		1	
Matrix	Solid		Solid		Solid	
Units	$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$	
Percent Moisture	15.2		15.6		15.7	
MDL	3.5		3.6		3.6	
		$P Q L$		$P O L$		PQL
Total Petroleum Hydrocarbons	3.5 U	9.0	3.6 U	9.0	8.8 I	9.0
Surrogate \% Recovery						
OTP	83.5		84.6		92.1	
C39/ Nonatriacontane	89.5		79.7		98.4	

Client I.D.	SB-17 @ $\mathbf{4}^{\text {P }}$		Blank	
Alpha I.D.	1104022-17		1104022	
Date Sampled	4/13/11		NA	
Date Extracted	4/14/11		4/14/1	
Date Analyzed	4/14/11		4/14/1	
Dilution Factor	1		1	
Matrix	Solid		Solid	
Units	$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$	
Percent Moisture	7.95		NA	
MDL	3.3		3.0	
	PQL		PQL	
Total Petroleum Hydrocarbons	3.3 U	9.0	3.0 U	9.0
Surrogate \% Recovery				
OTP	82.6		64.6	
C39/ Nonatriacontane	94.3		79.4	

[^39]Client I.D.
Alpha LD.
Date Sampled
Date Analyzed
Dilion Factor
Matrix
Units (ppo)

Benzene
Toluene
Ethybenene
Total xylenes
MTBE
Total BTEX
(Surr)Toluene-d8 (\%) (Surr) 4-BFB (\%)
SB-4
1104022.5
$4 / 13 / 11$
$4 / 14 / 11$
2
Liquid
$u g / L$

$0.2 U$
$0.2 U$
$0.3 U$
$0.3 U$
$0.2 U$
$0.2 U$

107
113

$M 01$	102
0.2	1.0
0.2	1.0
0.3	1.0
0.3	1.0
0.2	1.0
0.2	1.0

$58-7$
$1104022-9$
$4 / 13 / 11$
$4 / 14 / 11$
1
Lquid
ug/

Client I. ${ }^{\text {D }}$	Method Blank			
Alpha I.D.	1104022-19			
Date Sampled	NA			
Date Analyzed	4/14/11			
Dilution Factor	1			
Matrix	Lquid			
Units (ppo)	ug/L			
		MDL	$P O L$	CASH
Benzene	0.20	0.2	1.0	71-43-2
Toluene	0.2 U	0.2	1.0	$108-88-3$
Ethybenzene	0.3 U	0.3	1.0	100-41-4
Total xylenes	0.3 U	0.3	1.0	$1330-20-7$
MTBE	0.2 U	0.2	1.0	1634-04-4
Total BTEX	0.2 U	0.2	1.0	-63404
urr)Toluene-d8 (\%)	110			$\frac{\text { Acceptable Limits }}{70-130 \%}$
(Surr)4-BFB (\%)	124			70-130\%

The qualfer "L" cenotes the value report is above the cabration range. The actual value may be higher than the value given
The qualfer "I" denotes that the reported value s between the MDL (Method Detection Limit) and the PQL (Practical Quartitation Limit) The qualfer "E" denotes that the analyte was not present, and the value preceding the "U" is the MOL

Client L.D.	SB-4			SB-7			SB-17		
Alpha 1.D.	1104022			110402			1104022		
Date Sampled	4/13/1			4/13/1			4/13/		
Date Extracted	4/15/1			4/15/1			$4 / 15$		
Date Analyzed	4/15/1			4/15/1			4/15/11		
Dilution Factor	1			1			$\begin{gathered} 4 / 151 \\ 1 \end{gathered}$		
Matrix	Liquid			Liquid			Liquid		
Units	ug/L			ug/L			ug/L		
		MDL	$P Q L$		MOL	$P O L$		MDL	$P Q L$
Naphthalene	0.15 U	0.15	2.0	0.15 U	0.15	2.0			
Acenaphthylene	0.58 U	0.58	2.0	0.58 U	0.58	2.0	0.15 U	0.15	2.0
1-Methylnaphthalene	0.71 U	0.71	2.0	0.71 U	0.71	2.0	0.58 U	0.58	2.0
2-MethyInaphthalene	0.63 U	0.63	2.0	0.63 U	0.63	2.0	0.71 U	0.71	2.0
Acenaphthene	0.68 U	0.68	2.0	0.68 U	0.63	2.	0.63 U	0.63	2.0
Fluorene	0.17 U	0.17	2.0	0.68	0.68	2.0	0.68 U	0.68	2.0
Phenanthrene	0.09 U	0.09	20	0.17	0.17	2.0	0.17 U	0.17	2.0
Anthracene	0.06 U	0.06	2.0	0.09	0.09	2.0	0.09 U	0.09	2.0
Fluoranthene	0.22 U	0.22	0.2	, 22	0.06	2.0	0.06 U	0.06	2.0
Pyrene	0.20 U	0.20	0.2	0.22	0.22	0.2	0.22 U	0.22	0.2
Benzo(a)anthracene	0.64	0.12	0.2	0.12 U	0.20	0.2	0.20 U	0.20	0.2
Chrysene	0.16 U	0.16	0.2	0.164	0.12	0.2	0.12 U	0.12	0.2
Benzo(b)fluoranthene	0.10 U	0.10	0.2	0.16 U	0.16	0.2	0.16 U	0.16	0.2
Benzo(k)fluoranthene	0.08 U	0.08	0.1	0.10 U	0.10	0.2	0.10 U	0.10	0.2
Benzo(a)pyrene	0.12 U	0.12	0.2	. 0.12 U	0.08	0.1	0.08 U	0.08	0.1
Dibenzo(a, h)anthracene	0.10 U	0.10	0.2	0.10 U	0.12	0.2	0.12 U	0.12	0.2
Benzo(g, h,i)perylene	0.18 U	0.18	0.2	0.18 U	0.10	0.2	0.10 U	0.10	0.2
hdeno(1,2,3-c,d)pyrene	0.15 U	0.15	0.2	0.15 U	0.15	. 2	0.18 U	0.18	0.2
					0.15	0.2	0.15 U	0.15	0.2
Surrogate \% Recovery									
p-Terphenyl-d14	69.7			79.1			82.7		

The qualiter "L" denotes that the value reported is above the calibration curve
The qualtier "! denotes that the reported value is beween the MOL (Method Detection Limit) and the PQ (Practical Quantitation Limit)
The qualfer "U" denotes that the analyte was not detected, and the value preceding the " U " is the MDL
Surtoaate \% Recovery limits are: p-Terohenvi 72.4-130
$\left.\begin{array}{lcllll}\text { Client I.D. } & \text { Blank } \\ \text { Alpha I.D. } \\ \text { Date Sampled } & \text { 1104022-19 }\end{array}\right)$

[^40]| Client I.D. | SB-4 | | SB-7 | | SB-17 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alpha I.D. | 1104022-5 | | 1104022-9 | | 1104022-18 | |
| Date Sampled | 4/13/11 | | 4/13/11 | | 4/13/11 | |
| Date Extracted | 4/14/11 | | 4/14/11 | | 4/14/11 | |
| Date Analyzed | 4/14/11 | | 4/14/11 | | 4/14/11 | |
| Dilution Factor | 1 | | , | | 4/11 | |
| Matrix | Liquid | | Liquid | | Liquid | |
| Units | mg / L | | mg / L | | mg / L | |
| MDL | 0.20 | | 0.20 | | 0.20 | |
| | | PQL | | POL | | PQt |
| Total Petroleum Hydrocarbons | 0.20 U | 0.60 | 0.20 U | 0.60 | 0.20 U | 0.60 |
| Surrogate \% Recovery | | | | | | |
| OTP | 56.7 | | 71.2 | | 71.9 | |
| C39/Nonatriacontane | 75.1 | | 95.1 | | 84.7 | |

Client I.D.	Blank	
Alpha I.D.	$1104022-19$	
Date Sampled	NA	
Date Extracted	$4 / 14 / 11$	
Date Analyzed	$4 / 14 / 11$	
Dilution Factor	1	
Matrix	Liquid	
Units	mg / L	
MDL	0.20	
		$\underline{P Q L}$
Total Petroleum Hydrocarbons	0.20 U	0.60
Surrogate \% Recovery		
OTP	$\mathbf{7 9 . 6}$	
C39/ Nonatriacontane	63.5	

ANALYSIS DATE : $4 / 14 / 11$

SAMPLE ID \#: $1002006-1$ MATRIX: | QOIL |
| :--- |
| QATCH ID: |
| 041411A |

COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	$\begin{gathered} \text { MS \% } \\ \text { RECOVERY } \end{gathered}$	$\begin{gathered} \text { MSD \% } \\ \text { RECOVERY } \end{gathered}$	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	$\begin{aligned} & \text { MAXIMUM } \\ & \text { RPD } \\ & \hline \end{aligned}$
Vinyl chloride	0.0	20	25	23	125.5\%	117.4\%	6.6%	70.0\%	130.0\%	20.0\%
1,1-Dichloroethene	0.0	20	23	22	112.5\%	110.7\%	1.7\%	70.0\%	130.0\%	20.0\%
MTBE	0.0	20	21	21	106.5\%	106.5\%	0.0\%	70.0\%	130.0\%	20.0\%
1,1-Dichloroethane	0.0	20	22	21	108.0\%	103.6\%	4.2\%	70.0\%	130.0\%	20.0\%
Chioroform	0.0	20	24	23	117.6\%	113.4\%	3.6\%	70.0\%	130.0\%	20.0\%
Carbon Tetrachloride	0.0	20	22	19	109.1\%	96.2\%	12.5\%	70.0\%	130.0\%	20.0\%
1,1,1-Trichloroethane	0.0	20	24	23	121.5\%	116.9\%	3.9\%	70.0\%	130.0\%	20.0\%
Benzene	0.0	20	22	22	111.0\%	107.8\%	2.9\%	70.0\%	130.0\%	20.0\%
Trichloroethene	0.0	20	23	23	116.9\%	114.8\%	1.8\%	70.0\%	130.0\%	20.0\%
1,2-Dichloropropane	0.0	20	21	21	106.9\%	106.1\%	0.7\%	70.0\%	130.0\%	20.0\%
Toluene	0.0	20	24	23	118.4\%	114.0\%	3.8\%	70.0\%	130.0\%	20.0\%
Tetrachloroethene	0.0	20	28	26	137.7\%	132.3\%	4.0\%	70.0\%	130.0\%	20.0\%
Chiorobenzene	0.0	20	24	23	118.2\%	114.8\%	2.9\%	70.0\%	130.0\%	20.0\%
Ethylbenzene	0.0	20	23	22	115.6\%	111.6\%	3.5\%	70.0\%	130.0\%	20.0\%
m,p-Xylenes	0.0	40	49	47	122.6\%	118.0\%	3.8\%	70.0\%	130.0\%	20.0\%
o-Xylene	0.0	20	23	22	116.8\%	112.1\%	4.2\%	70.0\%	130.0\%	20.0\%
1,1,2,2-Tetrachoroethane	0.0	20	20	20	101.6\%	98.3\%	3.3%	70.0\%	130.0\%	20.0\%
1,4-Dichlorobenzene	0.0	20	22	23	108.4\%	117.5\%	8.0\%	70.0\%	130.0\%	20.0\%

ANALYSIS DATE: 4 SAMPLE ID \#:					MATRIX : QC BATCH ID:	$\begin{gathered} \text { SOLL } \\ 041411 \mathrm{~A} \end{gathered}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	LCS AMOUNT RECOVERED	LCS \% RECOVERY	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY
Vinyl chloride	0.0	20	24	122.5\%	70.0\%	130.0\%
1,1-Dichlorocthene	0.0	20	23	113.1\%	70.0\%	130.0\%
MTBE	0.0	20	21	107.2\%	70.0\%	130.0\%
1,1-Dichloroethane	0.0	20	21	106.8\%	70.0\%	130.0\%
Chloroform	0.0	20	23	114.8\%	70.0\%	130.0\%
Carbon Tetrachloride	0.0	20	20	100.4\%	70.0\%	130.0\%
1,1,1-Trichloroethane	0.0	20	24	119.3\%	70.0\%	130.0\%
Benzene	0.0	20	22	108.9\%	70.0\%	130.0\%
Trichloroethene	0.0	20	23	116.7\%	70.0%	130.0\%
1,2-Dichloropropane	0.0	20	21	106.5\%	70.0\%	130.0\%
Toluene	0.0	20	23	114.8\%	70.0\%	130.0\%
Tetrachloroethene	0.0	20	27	132.7\%	70.0\%	130.0\%
Chlorobenzene	0.0	20	23	117.3\%	70.0\%	130.0\%
Ethybenzene	0.0	20	23	114.2\%	70.0\%	130.0\%
m,p-xylenes	0.0	40	48	119.9\%	70.0\%	130.0\%
--Xylene	0.0	20	22	112.4\%	70.0\%	130.0\%
1,1,2,2-Tetrachoroethane	0.0	20	20	99.4\%	70.0\%	130.0\%
1,4-Dichlorobenzene	0.0	20	21	105.4\%	70.0\%	130.0\%

ANALYSIS DATE: SAMPLE ID \#:	4/14/11 SAND								MATRIX: QC BATCH ID:	$\begin{aligned} & \text { SOLL } \\ & 041411 \mathrm{~A} \end{aligned}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	MS \% RECOVERY	MSD \% RECOVERY	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	$\begin{gathered} \text { MAXIMUM } \\ \text { RPD } \\ \hline \end{gathered}$
Naphthalene	0.0	25.0	19.4	19.1	77.6\%	76.4\%	1.6\%	70.0\%	130.0\%	25.0\%
Fluorene	0.0	25.0	20.2	20.1	80.8\%	80.4\%	0.5\%	70.0\%	130.0\%	25.0\%
Phenanthrene	0.0	25.0	20.4	20.6	81.6\%	82.4\%	1.0\%	70.0\%	130.0\%	25.0\%
Anthracene	0.0	25.0	20.2	20.0	80.8\%	80.0\%	1.0\%	70.0\%	130.0\%	25.0\%
Fluoranthene	0.0	25.0	22.2	22.4	88.8\%	89.6\%	0.9\%	70.0\%	130.0\%	25.0\%
Pyrene	0.0	25.0	23.3	23.1	93.2\%	92.4\%	0.9\%	70.0\%	130.0\%	25.0\%
Benzo(a)anthracene	0.0	25.0	25.9	25.7	103.6\%	102.8\%	0.8\%	70.0\%	130.0\%	25.0\%
FWane	0.0	25.0	27.3	27.1	109.2\%	108.4\%	0.7\%	70.0\%	130.0\%	25.0\%
Benzo(b)fluoranthene	0.0	25.0	27.0	25.7	108.0\%	102.8\%	4.9\%	70.0\%	130.0\%	25.0\%
Benzo(k)fluoranthene	0.0	25.0	26.6	26.5	106.4\%	106.0\%	0.4\%	70.0\%	130.0\%	25.0\%
Benzo(a)pyrene	0.0	25.0	27.8	27.6	111.2\%	110.4\%	0.7\%	70.0\%	130.0\%	25.0\%
Dibenzo(a, h anthracene	0.0	25.0	25.5	26.2	102.0\%	104.8\%	2.7\%	70.0\%	130.0\%	25.0\%
Benzo(g,h,I)perylene	0.0	25.0	25.8	26.5	103.2\%	106.0\%	2.7\%	70.0\%	130.0\%	25.0\%
Indeno(1,2,3-c,d)pyrene	0.0	25.0	27.5	27.7	110.0\%	110.8\%	0.7\%	70.0\%	130.0\%	25.0\%

NALYSIS DATE: SAMPLE ID \#:	4/14/11 SAND								MATRIX : QC BATCH ID:	$\begin{gathered} \text { SOIL } \\ 041411 \mathrm{~A} \end{gathered}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	MS \% RECOVERY	MSD \% RECOVERY	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	MAXIMUM RPD
Total Petroleum tydrocarbons	0.0	3400	2928	2802	86.1\%	82.4\%	4.4\%	62\%	204\%	25.0\%

ANALYSIS DATE: $4 / 14 / 11$ SAMPLE ID \#: LCS					MATRIX: QC BATCH ID:	$\begin{gathered} \text { SOIL } \\ 041411 \mathrm{~A} \end{gathered}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	LCS AMOUNT RECOVERED	LCS \% RECOVERY	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY
Total Petroleum Hydrocattons	0.0	1700	1071	63.0\%	63.0\%	153.0\%

MATRIX : LIQUID

SAMPLE ID \#: MW
QC BATCH ID: 041411B

COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	$\begin{gathered} \text { MS \% } \\ \text { RECOVERY } \end{gathered}$	$\begin{gathered} \text { MSD \% } \\ \text { RECOVERY } \\ \hline \end{gathered}$	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	$\begin{gathered} \text { MAXIMUM } \\ \text { RPD } \\ \hline \end{gathered}$
Vinyl chioride	0.0	20	26	25	131.6\%	127.2\%	3.4\%	70.0\%	130.0\%	20.0\%
1,1-Dichloroethene	0.0	20	23	22	114.5\%	109.8\%	4.1\%	70.0\%	130.0\%	20.0\%
MTBE	0.0	20	17	18	87.2\%	91.6\%	5.0\%	70.0\%	130.0\%	20.0\%
1,1-Dichloroethane	0.0	20	22	22	110.7\%	111.2\%	0.5\%	70.0\%	130.0\%	20.0\%
Chloroform	0.0	20	25	23	123.2\%	114.6\%	7.3\%	70.0\%	130.0\%	20.0\%
Carbon Tetrachloride	0.0	20	21	20	106.6\%	100.3\%	6.1\%	70.0\%	130.0\%	20.0\%
1,1,1-Trichloroethane	0.0	20	22	21	109.9\%	106.8\%	2.9\%	70.0\%	130.0\%	20.0\%
	0.0	20	25	24	122.6\%	119.3\%	2.7\%	70.0\%	130.0\%	20.0\%
Trichloroethene	0.0	20	22	21	107.7\%	102.9\%	4.5\%	70.0\%	130.0\%	20.0\%
1,2-Dichloropropane	0.0	20	24	22	120.3\%	111.7\%	7.4\%	70.0\%	130.0\%	20.0\%
Toluene	0.0	20	25	24	124.5\%	119.8\%	3.8\%	70.0\%	130.0\%	20.0\%
Tetrachloroethene	0.0	20	24	22	119.2\%	112.3\%	6.0\%	70.0\%	130.0\%	20.0\%
Chlorobenzene	0.0	20	28	27	140.0\%	134.0\%	4.4\%	70.0\%	130.0\%	20.0\%
Ethybenzene	0.0	20	25	24	126.4\%	119.4\%	5.7\%	70.0\%	130.0\%	20.0\%
m,p-xylenes	0.0	40	55	50	138.3\%	125.7\%	9.5\%	70.0\%	130.0\%	20.0\%
0-Xviene	0.0	20	24	24	117.6\%	118.6\%	0.8\%	70.0\%	130.0\%	20.0\%
1,1,2,2-Tetrachloroethane	0.0	20	32	31	158.4\%	153.3\%	3.3\%	70.0\%	130.0\%	20.0\%
1,4-Dichlorobenzene	0.0	20	26	16	129.3\%	80.9\%	46.0\%	70.0\%	130.0\%	20.0\%

ANALYSIS DATE: 4/ SAMPLE ID \#:					MATRIX: QC BATCH ID:	$\begin{aligned} & \text { LIQUID } \\ & 041411 B \end{aligned}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	LCS AMOUNT RECOVERED	LCS \% RECOVERY	LOWER LIMIT U RECOVERY	JPPER LIMIT RECOVERY
Vinyl chloride	0.0	20	26	131.3\%	70.0\%	130.0\%
1,1-Dichloroethene	0.0	20	22	108.9\%	70.0\%	130.0\%
MTBE	0.0	20	18	87.7\%	70.0\%	130.0\%
1,1-Dichloroethane	0.0	20	21	106.2\%	70.0\%	130.0\%
Chloroform	0.0	20	22	109.3\%	70.0\%	130.0\%
Carbon Tetrachloride	0.0	20	21	102.7\%	70.0\%	130.0\%
1,1,1-Trichloroethane	0.0	20	22	107.8\%	70.0\%	130.0\%
Benzene	0.0	20	21	106.9\%	70.0\%	130.0\%
Trichloroethene	0.0	20	19	97.3\%	70.0\%	130.0\%
1,2-Dichloropropane	0.0	20	22	109.0\%	70.0\%	130.0\%
Toluene	0.0	20	24	122.2\%	70.0\%	130.0\%
Tetrachloroethene	0.0	20	23	117.3\%	70.0\%	130.0\%
Chlorobenzene	0.0	20	25	127.1\%	70.0\%	130.0\%
Ethylbenzene	0.0	20	22	111.2\%	70.0\%	130.0\%
m,p-Xylenes	0.0	40	48	121.0\%	70.0\%	130.0\%
o-xylene	0.0	20	23	114.9\%	70.0\%	130.0\%
1,1,2,2-Tetrachloroethane	0.0	20	31	157.1\%	70.0\%	130.0\%
1,4-Dichlorobenzene	0.0	20	17	86.8\%	70.0\%	130.0\%

ANALYSIS DATE: SAMPLE ID \# :	$\begin{gathered} 4 / 15 / 11 \\ 1104027-3 \end{gathered}$								MATRIX: QC BATCH ID:	$\begin{aligned} & \text { LQQUD } \\ & 041511 A \end{aligned}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	MS \% RECOVERY	MSD \% RECOVERY	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	MAXIMUM RPD
Naphthalene	0.0	25.0	24.3	23.7	97.2\%	94.8\%	2.5\%	70.0\%	130.0\%	25.0\%
Fluorene	0.0	25.0	21.7	19.4	86.8\%	77.6\%	11.2\%	70.0\%	130.0\%	25.0\%
Phenanthrene	0.0	25.0	19.0	19.2	76.0\%	76.8\%	1.0\%	70.0\%	130.0\%	25.0\%
Anthracene	0.0	25.0	18.8	18.7	75.2\%	74.8\%	0.5\%	70.0\%	130.0\%	25.0\%
Fluoranthene	0.0	25.0	21.7	21.1	86.8\%	84.4\%	2.8\%	70.0\%	130.0\%	25.0\%
Pyrene	0.0	25.0	21.1	21.6	84.4\%	86.4\%	2.3\%	70.0\%	130.0\%	25.0\%
Benzo(a)anthracene	0.0	25.0	22.2	24.4	88.8\%	97.6\%	9.4\%	70.0\%	130.0\%	25.0\%
Chrusene	0.0	25.0	23.1	25.8	92.4\%	103.2\%	11.0\%	70.0\%	130.0\%	25.0\%
Benzo(b)fluoranthene	0.0	25.0	22.9	25.0	91.6\%	100.0\%	8.8\%	70.0\%	130.0\%	25.0\%
Benzo(k)fluoranthene	0.0	25.0	24.0	25.2	96.0\%	100.8\%	4.9\%	70.0\%	130.0\%	25.0\%
Benzo(a)pyrene	0.0	25.0	24.1	26.2	96.4\%	104.8\%	8.3\%	70.0\%	130.0\%	25.0\%
Dibenzo(a, h)anthracen	0.0	25.0	22.4	23.9	89.6\%	95.6\%	6.5\%	70.0\%	130.0\%	25.0\%
Benzo $(\mathrm{g}, \mathrm{h}, \mathrm{l})$ perylene	0.0	25.0	21.4	23.0	85.6\%	92.0\%	7.2\%	70.0\%	130.0\%	25.0\%
Indeno($1,2,3-6, \mathrm{~d}$)pyren	0.0	25.0	22.7	25.8	90.8\%	103.2\%	12.8\%	70.0\%	130.0\%	25.0\%

FL-PRO
SPIKE RECOVERY REPORT

TNALYSIS DATE: 4/14/11 SAMPLE ID \#: MW-3-20118									MATRIX : QC BATCH ID: UPPER LIMIT RECOVERY	$\begin{aligned} & \text { Liquid } \\ & 041411 \mathrm{~A} \end{aligned}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	MS \% RECOVERY	MSD \% RECOVERY	RPD	LOWER LIMIT RECOVERY		MAXIMUM RPD
Total Petroum Hydrocarons	0.0	3400	3166	2779	93.1\%	81.7\%	13.0\%	41\%	101\%	20.0\%

ANALYSIS DATE: $4 / 14 / 11$

 SAMPLE ID \#: LCS| MATRIX: | Liquid |
| :---: | :---: |
| QC BATCH ID: | 041411 A |

LCS COMPOUND

Total Petroleum Hydrocarbons

LCS					
SAMPLE AMOUNT	AMOUNT SPIKED	AMOUNT RECOVERED	LCS \% RECOVERY	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY
0.0	1700	1464	86.1\%	55.0\%	118.0\%

CHAIN-OF-CUSTODY RECORD
Page \qquad of α

9645 E. Colonial Dr. Suite 114
Orlando, Florida 32817
CHAIN-OF-CUSTODY RECORD \qquad
(407) 382-5742 • Fax (407) 382-7195

Technical Report for

Alpha Analytics

GRU Phase 2 ESA
110059-0100
Accutest Job Number: F81550

Sampling Date: 04/13/11

Report to:
Alpha Analytics
jbowers@alphaanalyticsorlando.com
ATTN: John Bowers

Total number of pages in report: 51

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Jean Dent-Smith 407-425-6700

Certifications: FL (DOH E83510), NC (573), NJ (FL002), MA (FL946), IA (366). LA (03051), KS (E-10327). SC, AK This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.
Section 1: Sample Summary 3
Section 2: Sample Results 5
2.1:F81550-1: SB-1 @ 8 6
2.2:F81550-2: SB-2 @ 8^{\prime} 7
2.3: F81550-3: SB-3 @ 8 8
2.4: F81550-4: SB-4 @ 6 9
2.5: F81550-5: SB-4 10
2.6: F81550-6: SB-5 @ 8^{\prime} 11
2.7:F81550-7: SB-6@8' 12
2.8:F81550-8: SB-7 @ 8' 13
2.9: F81550-9: SB-7 14
2.10: F81550-10: SB-8 @ 8^{\prime} 15
2.11:F81550-11: SB-14 @ 3 16
2.12:F81550-12: SB-13@ 5^{\prime} 17
2.13:F81550-13: SB-15@ 6' 18
2.14:F81550-14: SB-16@ 6^{\prime} 19
2.15:F81550-15: SB-16@6' 20
2.16: F81550-16: SB-17@ 6" 21
2.17:F81550-17: SB-17 @ 4' 22
2.18: F81550-18: SB-17 23
Sectlon 3: Misc. Foms 24
3.1: Chain of Custody 25
Section 4: Metals Analysis - QC Data Summaries 29
4.1: Prep QC MP20392: As, $\mathrm{Ba}, \mathrm{Cd}, \mathrm{Cr}, \mathrm{Pb}, \mathrm{Se}, \mathrm{Ag}$ 30
4.2: Prep QC MP20395: As,Ba,Cd,Cr,Pb,Se,Ag 36
4.3: Prep QC MP20398: Hg 42
4.4: Prep QC MP20410: Hg 47

Sample Summary

Alpha Analytics
GRU Phase 2 ESA
Job No: F81550
Project No: 110059-0100

Sample Number	Collected Date	Time By		Matrix Received Code Type	Sample ID

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary

(continued)

Alpha Analytics							
GRU Phase 2 ESA Project No: 110059-0100							
Sample Number	Collected Date	Time By	Received	Mat	ix Type	Client Sample ID	
F81550-14	04/13/11	$15: 55 \mathrm{RJ}$	04/15/11	SO	Soil	SB-16@6"	
F81550-15	04/13/11	16:10 RJ	04/15/11	SO	Soil	SB-16@6	
F81550-16	04/13/11	$16: 25 \mathrm{RJ}$	04/15/11	SO	Soil	SB-17@ 6^{\prime}	
F81550-17	04/13/11	16:50 RJ	04/15/11	SO	Soil	SB-17@4'	
F81550-18	04/13/11	17:00 RJ	04/15/11	AQ	Ground Water	SB-17	

[^41]Sample Results

Report of Analysis

Client Sample ID:	SB-1 @ 8	
Lab Sample ID:	F81550-1	Date Sampled: $04 / 13 / 11$ Matrix:
SO - Soil	Date Received: 04/15/11 Percent Solids: 87.4	
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.271	0.41	0.082	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Barium	5.0 I	8.2	0.41	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Cadmium	0.041 U	0.16	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW8463050B ${ }^{3}$
Chromium	5.3	0.41	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Lead	9.1	0.82	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Mercury	0.021 I	0.084	0.0084	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW84674718 ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.16 U	0.82	0.16	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Silver	0.041 U	0.41	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{MDL}=$ Method Detection Limit

[^42]| Client Sample ID: | SB-2@ 8^{\prime} | |
| :--- | :--- | :--- |
| Lab Sample ID: | F81550-2 | Date Sampled: 04/13/11
 Matrix: |
| SO-Soil | Date Received: 04/15/11
 Percent Solids: 85.1 | |
| Project: | GRU Phase 2 ESA | |

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.69	0.51	0.10	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{\text {l }}$	SW846 30500 ${ }^{3}$
Barium	39.0	10	0.51	mg/kg	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{1}$	SW846 3050B ${ }^{3}$
Cadmium	0.051 U	0.20	0.051	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{1}$	SW846 3050B ${ }^{3}$
Chromium	4.2	0.51	0.051	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Lead	7.3	1.0	0.051	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Mercury	0.068 I	0.092	0.0092	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW846 7471B ${ }^{2}$	SW846 $7471 \mathrm{~B}^{4}$
Selenium	0.38 I	1.0	0.20	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010 ${ }^{1}$	SW846 3050B ${ }^{3}$
Silver	0.051 U	0.51	0.051	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010 ${ }^{\text {l }}$	SW84630508 ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410

Client Sample ID:	SB-3 $@ 8^{\prime}$	
Lab Sample ID:	F81550-3	Date Sampled: $04 / 13 / 11$
Matrix:	SO-Soil	Date Received: $04 / 15 / 11$ Project:
	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.67	0.41	0.083	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Barium	32.4	8.3	0.41	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Cadmium	0.041 U	0.17	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{\text {d }}$	SW846 3050B ${ }^{3}$
Chromium	5.5	0.41	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 C ${ }^{\text {a }}$	SW846 3050B ${ }^{3}$
Lead	9.3	0.83	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Mercury	0.0090 U	0.090	0.0090	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW846 7471B ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.17 U	0.83	0.17	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010 C	SW846 3050B ${ }^{3}$
Silver	0.041 U	0.41	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010 C ${ }^{\text {a }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$U=$ Indicates a result $<$ MDL
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-4 $a, 6$	
Lab Sample ID:	F81550-4	
Matrix:	SO-Soil	Date Sampled: $04 / 13 / 11$ Date Received: $04 / 15 / 11$ Percent Solids: 84.7
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.080 U	0.40	0.080	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C	SW84630508 ${ }^{3}$
Barium	4.21	8.0	0.40	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010 C ${ }^{\text {L }}$	SW846 3050B ${ }^{3}$
Cadmium	0.040 U	0.16	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010 ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Chromium	0.81	0.40	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010 ${ }^{\text {- }}$	SW846 3050B ${ }^{3}$
Lead	1.5	0.80	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Mercury	0.0095 U	0.095	0.0095	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW8467471B ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.16 U	0.80	0.16	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010 ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Silver	0.040 U	0.40	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010 ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

9041
$\triangle C O U T E=T$ Fersta inabutremisa

Client Sample ID: SB-4
Lab Sample ID: F81550-5

Matrix:	AQ - Ground Water
Project:	GRU Phase 2 ESA

Date Sampled: 04/13/11
Date Received: 04/15/11
Percent Solids: n/a

Total Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.0 U	10	2.0	ug 1	1	04/18/11	$04 / 1911 \mathrm{RS}$	SW8466010C ${ }^{3}$	SW846 3010A ${ }^{4}$
Barium	62.81	200	5.0	ug/	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3010A ${ }^{4}$
Cadmium	1.0 U	5.0	1.0	ug/1	1	04/18/11	04/19/11 RS	SW8466010C	SW846 3010A ${ }^{4}$
Chromium	11.3	10	1.0	ug/1	1	04/18/11	04/19/11 RS	SW8466010 ${ }^{\text {1 }}$	SW846 3010A ${ }^{4}$
Lead	12.8	5.0	1.0	ug/	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{3}$	SW846 3010A ${ }^{4}$
Mercury	0.085 I	1.0	0.050	ug/1	1	04/19/11	04/19/11 LM	SW846 7470A ${ }^{2}$	SW846 7470A ${ }^{5}$
Selenium	2.0 U	10	2.0	ug/	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{3}$	SW846 3010A ${ }^{4}$
Silver	1.0 U	10	1.0	ug/	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 3010A ${ }^{4}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8878
(3) Instrument QC Batch: MA8880
(4) Prep QC Batch: MP20395
(5) Prep QC Batch: MP20398

Client Sample ID:	SB-5@8
Lab Sample ID:	F81550-6
Matrix:	SO-Soll
Project:	GRU Phase 2 ESA

Date Sampled: 04/13/11
Date Received: 04/15/11
Percent Solids: 77.0

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.49	0.46	0.093	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Barium	22.3	9.3	0.46	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Cadmium	0.14 I	0.19	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Chromium	4.1	0.46	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Lead	26.4	0.93	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Mercury	0.0771	0.095	0.0095	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW8467471B ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.19 U	0.93	0.19	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010 ${ }^{1}$	SW846 3050b ${ }^{3}$
Silver	0.046 U	0.46	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010 ${ }^{1}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-6@8	
Lab Sample ID:	F81550-7	Date Sampled: 04/13/11
Matrix:	SO-Soil	Date Received: $04 / 15 / 11$ Percent Solids: 71.4
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.95	0.56	0.11	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{\text {l }}$	SW846 30508 ${ }^{3}$
Barium	31.1	11	0.56	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{\text {I }}$	SW846 30508 ${ }^{3}$
Cadmium	0.056 U	0.22	0.056	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{\text {a }}$	SW846 30508 ${ }^{3}$
Chromium	3.8	0.56	0.056	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{\text {I }}$	SW846 30508 ${ }^{3}$
Lead	12.0	1.1	0.056	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{\text {- }}$	SW846 30508 ${ }^{3}$
Mercury	0.13	0.11	0.011	mg/kg	1	04/20/11	04/20/11	LM	SW84674718 ${ }^{2}$	SW846 $7471 \mathrm{~B}^{4}$
Selenium	0.99 I	1.1	0.22	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{1}$	SW846 3050B ${ }^{3}$
Silver	0.056 U	0.56	0.056	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{\text {a }}$	SW846 30508 ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.55	0.53	0.11	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{\text {1 }}$	SW846 30508 ${ }^{3}$
Barium	27.8	11	0.53	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{1}$	SW846 30508 ${ }^{3}$
Cadmium	0.070 I	0.21	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Chromium	4.4	0.53	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 C ${ }^{\text {l }}$	SW846 30508 ${ }^{3}$
Lead	28.4	1.1	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Mercury	0.21	0.11	0.011	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW846 7471B ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.311	1.1	0.21	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{\text {l }}$	SW846 30503 ${ }^{3}$
Silver	0.053 U	0.53	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466610C ${ }^{1}$	SW846 30508 ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410

Client Sample ID:	SB-7
Lab Sample ID:	F81550-9
Matrix:	AQ-Ground Water
Project:	GRU Phase 2 ESA

Date Sampled: 04/13/11
Date Received: 04/15/11
Percent Solids: n/a

Total Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.0 U	10	2.0	ug/	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{3}$	SW846 3010A ${ }^{4}$
Barium	17.4 I	200	5.0	ug/1	1	04/18/11	04/19/11 RS	SW8466010 ${ }^{1}$	SW846 3010A ${ }^{4}$
Cadmium	1.0 U	5.0	1.0	ug/1	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 3010A ${ }^{4}$
Chromium	4.3 I	10	1.0	ug/1	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 3010A ${ }^{4}$
Lead	1.0 I	5.0	1.0	ug/	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{3}$	SW846 3010A ${ }^{4}$
Mercury	0.050 U	1.0	0.050	ug/	1	04/19/11	04/19/11 LM	SW846 7470A ${ }^{2}$	SW846 7470A ${ }^{5}$
Selenium	3.41	10	2.0	ug/l	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{3}$	SW846 3010. ${ }^{4}$
Silver	1.0 U	10	1.0	ug/1	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {d }}$	SW846 3010A ${ }^{4}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8878
(3) Instrument QC Batch: MA8880
(4) Prep QC Batch: MP20395
(5) Prep QC Batch: MP20398
$P Q L=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID: SB-8@ 8°

Lab Sample ID:	F81550-10	Date Sampled: 04/13/11
Matrix:	SO - Soil	Date Received: $04 / 15 / 11$

Project: GRU Phase 2 ESA

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.11 U	0.54	0.11	$\mathrm{mg} / \mathrm{kg}$	1	$04 / 18 / 11$	$04 / 19 / 11$	RS	SW 8466010 C

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-14 @ 3:	
Lab Sample ID:	F81550-11	Date Sampled: $04 / 13 / 11$ Matrix:
SO - Soil	Date Received: $04 / 15 / 11$ Percent Solids: 91.0	
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.092 U	0.46	0.092	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C 1	SW846 3050B ${ }^{3}$
Barium	1.4 I	9.2	0.46	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 30500 ${ }^{3}$
Cadmium	0.046 U	0.18	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Chromium	0.49	0.46	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {a }}$	SW846 30508 ${ }^{3}$
Lead	0.49 I	0.92	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Mercury	0.0090 U	0.090	0.0090	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW8467471B ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.18 U	0.92	0.18	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Silver	0.046 U	0.46	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {1 }}$	SW846 3050 ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<$ MDL
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-13 @ 5^{\prime}	
Lab Sample ID:	F81550-12	Date Sampled: $04 / 13 / 11$ Matrix:
	SO-Soil	Date Received: $04 / 15 / 11$ Project:
	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.9	0.42	0.084	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Barium	6.91	8.4	0.42	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 3050日 ${ }^{3}$
Cadmium	0.042 U	0.17	0.042	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010 ${ }^{1}$	SW846 30500 ${ }^{3}$
Chromium	8.9	0.42	0.042	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010 ${ }^{1}$	SW846 3050B ${ }^{3}$
Lead	7.0	0.84	0.042	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010 C ${ }^{1}$	SW846 3050B ${ }^{3}$
Mercury	0.0093 U	0.093	0.0093	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW846 74718 ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.53 I	0.84	0.17	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C	SW846 3050B ${ }^{3}$
Silver	0.042 U	0.42	0.042	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {I }}$	SW846 30508 ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410

Client Sample ID:	SB-15 06	
Lab Sample ID:	F81550-13	Date Sampled: 04/13/11
Matrix:	SO-Soil	Date Received: $04 / 15 / 11$ Percent Solids: 80.9
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.161	0.46	0.092	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 $3050 \mathrm{~B}^{3}$
Barium	4.4 I	9.2	0.46	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Cadmium	0.046 U	0.18	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C	SW846 3050B ${ }^{3}$
Chromium	2.3	0.46	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C 1	SW846 30500 ${ }^{3}$
Lead	3.0	0.92	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Mercury	0.024 I	0.10	0.010	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW84674718 ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.18 U	0.92	0.18	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Silver	0.046 U	0.46	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010 ${ }^{1}$	SW846 30500 ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-16@6"	
Lab Sample ID:	F81550-14	Date Sampled: 04/13/11 Matrix:
SO-Soil	Date Received: 04/15/11 Percent Solids: 84.7	
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.61	0.48	0.096	mg/kg	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 $3050 \mathrm{~B}^{3}$
Barium	10.5	9.6	0.48	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{\text {1 }}$	SW846 30508 ${ }^{3}$
Cadmium	0.048 U	0.19	0.048	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Chromium	3.0	0.48	0.048	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Lead	4.9	0.96	0.048	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Mercury	0.031 I	0.092	0.0092	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW8467471B ${ }^{2}$	SW846 7471B ${ }^{4}$
Selenium	0.19 U	0.96	0.19	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Silver	0.048 U	0.48	0.048	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010 ${ }^{1}$	SW846 305003 ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410

Date Sampled:	$04 / 13 / 11$
Date Received:	$04 / 15 / 11$
Percent Solids:	73.8

Client Sample ID: SB-16@6
Lab Sample ID: F81550-15
Date Received: 04/15/11
Matrix: $\quad \mathrm{SO}$ - Soil
Date Received: 04/15/11
Project: GRU Phase 2 ESA

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Arsenic	0.58	0.53	0.11	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 30508 ${ }^{3}$
Barium	25.4	11	0.53	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 30508 ${ }^{3}$
Cadmium	0.053 U	0.21	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 30508 ${ }^{3}$
Chromium	3.9	0.53	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Lead	15.7	1.1	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010 ${ }^{1}$	SW846 3050B ${ }^{3}$
Mercury	0.12	0.11	0.011	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW84674718 ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.21 U	1.1	0.21	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{\text {- }}$	SW846 30508 ${ }^{3}$
Silver	0.053 U	0.53	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{\text {I }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-17 @ $6^{\prime \prime}$	
Lab Sample ID:	F81550-16	Date Sampled: 04/13/11
Matrix:	SO-Soil	Date Received: $04 / 15 / 11$ Percent Solids: 94.0
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.79	0.40	0.079	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{4}$
Barium	23.6	7.9	0.40	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {I }}$	SW846 3050B ${ }^{4}$
Cadmium	0.131	0.16	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 30508 ${ }^{4}$
Chromium ${ }^{\text {a }}$	5.9	1.6	0.16	mg/kg	4	04/18/11	04/19/11 RS	SW846 6010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Lead ${ }^{\text {a }}$	29.1	3.2	0.16	$\mathrm{mg} / \mathrm{kg}$	4	04/18/11	04/19/11 RS	SW846 6010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Mercury	0.11	0.084	0.0084	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW8467471B ${ }^{3}$	SW8467471B ${ }^{5}$
Selenium ${ }^{\text {a }}$	0.64 U	3.2	0.64	$\mathrm{mg} / \mathrm{kg}$	4	04/18/11	04/19/11 RS	SW8466010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Silver	0.040 U	0.40	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{4}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8880
(3) Instrument QC Batch: MA8883
(4) Prep QC Batch: MP20392
(5) Prep QC Batch: MP20410
(a) Elevated reporting limit(s) due to matrix interference.

Client Sample ID:	SB-17 @ 4	
Lab Sample ID:	F81550-17	Date Sampled: $04 / 13 / 11$ Matrix:
SO-Soil	Date Received: $04 / 15 / 11$ Percent Solids: 93.1	
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.73	0.50	0.099	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{\text {d }}$	SW846 30500 ${ }^{3}$
Barium	11.4	9.9	0.50	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 C	SW846 3050B ${ }^{3}$
Cadmium	0.050 U	0.20	0.050	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010 ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Chromium	5.7	0.50	0.050	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW8466010C ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Lead	3.5	0.99	0.050	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 60100 ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Mercury	0.0090 U	0.090	0.0090	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW846 7471B ${ }^{2}$	SW846 $7471 \mathrm{~B}^{4}$
Selenium	0.20 U	0.99	0.20	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010C ${ }^{\text {a }}$	SW846 3050B ${ }^{3}$
Silver	0.050 U	0.50	0.050	$\mathrm{mg} / \mathrm{kg}$	1	04/18/11	04/19/11	RS	SW846 6010 ${ }^{\text {a }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20392
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-17	
Lab Sample ID:	F81550-18	Date Sampled: 04/13/11 Matrix:
AQ-Ground Water	Date Received: 04/15/11 Percent Solids: n/a	
Project:	GRU Phase 2 ESA	

Total Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.0 U	10	2.0	ug/1	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{3}$	SW846 3010A ${ }^{4}$
Barium	19.41	200	5.0	ug/1	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 3010A ${ }^{4}$
Cadmium	1.0 U	5.0	1.0	ug/1	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 3010A ${ }^{4}$
Chromium	43.2	10	1.0	ug/1	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{\text {d }}$	SW846 3010A ${ }^{4}$
Lead	5.2	5.0	1.0	ug/1	1	04/18/11	04/19/11 RS	SW8466010C ${ }^{3}$	SW8 $463010 A^{4}$
Mercury	0.33 I	1.0	0.050	ug/1	1	04/19/11	04/19/11 LM	SW846 7470A ${ }^{2}$	SW8467470A ${ }^{5}$
Selenium	2.0 U	10	2.0	ug/1	1	04/18/11	04/19/11 RS	SW846 6010 ${ }^{3}$	SW846 3010A ${ }^{4}$
Silver	1.0 U	10	1.0	ug/1	1	04/18/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3010A ${ }^{4}$

(1) Instrument QC Batch: MA8877
(2) Instrument QC Batch: MA8878
(3) Instrument QC Batch: MA8880
(4) Prep QC Batch: MP20395
(5) Prep QC Batch: MP20398

PQL = Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<$ MDL
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Chain of Custody

F81550: Chain of Custody
Page 1 of 4

```
Nob Namber: F91550 C1imat projuct: 110059-0100
Accomet mlpma Alphe dielytios
```



```
Raport to: HC Date: 22-ApR-11 Delfv: conce Seatecodet is
5umgla mancer climat =0
##5350-1 se-1**
FA1550-2 SB-2.*
F41550-3 5%-3 * %
FB15504 8#-4 6.
7415so.5 EB-4
781550-6 8b-5 - 8.
p01550-7 SB-6 * 0.
P81550-% SE.7. #
F01550-9 SB-7
##1530-10 EE-E|E*
Fen550.11 SE-14e 3'
T81550-17 SE-13 - 5.
MA1550-13 sB-15 6.
F01550-14 58-16* 6.
*1550-15 SB-16* 6'
**1550-16 5*-17 * 6.
F81550-17 S8-17 * *
F41550-10 Ss-17
```

Packege AC hre
package so mix

F81550: Chain of Custody
Page 3 of 4

ACCUTEST LABORATORIES SAMPLE RECEIPT CONFIRMATION

COOLER INFORMATION
CUSTODY SEAL NOT PRESENT OR NOT INTACT
CHAIN OF CUSTODY NOT RECEIVED (OC)
ANAL XIS REQUESTED IS UNCLEAR OR MISSING
SAMPLE DATES OR TIMES UNCLEAR OR MISSING
TEMPERATURE CRITERIA NOT MET
WET ICE PRESENT
TRIP BLANK INFORMATION
TRIP BLANK PROVIDED
8 Trip blank not provided
Trip blank not on Cod
TRIP BLANK INTACT
TRIP BLANK NOT INTACT
RECEIVED WATER TRIP BLANK
RECEIVED SOIL TRIP BLANK
MISC. INFORMATION
NUMBER OF ENCORES? 25-GRAM X NUMBER OF 5035 FIELD KITS?
NUMBER OF LAB FILTERED METALS ?

TEMPERATURE INFORMATION

SUMMARY OF COMMENTS \qquad

- \qquad
\qquad

TECHNICIAN SIGNATURE/DATE NF 12/10

receipt confirmation 122910.xds

Southeast

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

 $10, ~ 581550-11,591550-12,781550-13,881550-14,581550-15$, E81550-16, $581550-17$

Resubre Mru are showm as zero for calculatuon purposes
(*) Outcide of QC limhte
(anr) Analyte not requested

MATRIX SPIKE AND DUPLHCARE RESULTS SURMRY

(a) Elevated reporting limit(o) due to matrix interference.
(b) Spike recovery indicates possible matrix interference andor sample nonhomogeneity.

MATRIX SPTRE AND DURTCATE RESULS SUMMARY

10, 581550-11, F81550-12, F81550-33, F81550-14, 581550-15, F81550-15, F81550-17
Resuhts TD, are shomn as zero for calculation purposes
(*) Outside of Qe limits
(N) Matrix Splke Rec. Outside of Co limits
(Anc) Analyte not requested
(a) Sptie recovery inchcates posshbie matnix interference andion Bampie nonhomogenelty.
(b) blevated reportirg Limit (s) due wo matrix interference.
(c) High RPD due to possible sample nonhomogenetty.

SERTEL DHUMTON RESUUTS SUMMRE

 10, E81550-11, Z81550-12, P81550-13, E31550-14, F81550-15, F81550-16, 501550-17

Results < Mob are shomn as zero for calculation purposes
(*) Ontside of QC Mmits
(anr) Analyte not requested
(a) Serial dinution incioates possible matrix meterference.
(b) peroent diference acceptabje due to low intual sample concentration (a 50 (imes mol).

> post orcestate, serke sumary

```
                                    Login Number: Fel550
Account: ArPMA - Alpha Amalytios
Project: gru ghase z EsA
```


Alumirum
Antimony

Axseric	9.8	10	137.5	134.848	204.3	0.2	5	100	69.5* (a)	$80-120$
Barium	9.8	10	1824	1787.52	2998	0.2	12.5	250	84.2	80-120
Berymitum										
Cacmium	9.8	10	10.2	3.996	59.7	0.2	2.5	50	99.4	80-120
Cancium										
Chrombum	9.8	10	279.3	273.518	313.8	0.2	2.5	50	80.6	90-120
Cobalt										

Inon

Leed	9.8	10	350.9	343.882	392.5	0.2				
,	9.8	10	-50.9	34.8882	392.5	0.2	2.3	50	97.2	82-120

Magnesium
Manganese

Molybdenum
Nickel

Potassium

Sevenium	3.8	10	0	0	121.6	0.2	5	100	121.6* ${ }^{\text {a }}$	80-120
Sulver	9.8	10	0	0	35.2	0.2	2.5	50	70.4* (a)	$80-12$

Sodium
Strontium

Thelisum
Tin

Theandut
Vanadiun
zinc
 $10, F 81550-11$, E81550-12, $581550-13, \operatorname{F81550-14,~581550-15,~} 881550-16, ~ 681550-17$

Results < ToL awe shom as zero for calculation purposes
(*) Outside of oc Ilmits
(**) Cons sample result $=$ Raw * \{ample volume / final volumet
(anr) Analyte mot requested
(a) Sphke recovery indicates matrix interference andow outside controh dimits aue to high level in sample relative to spike amount.

Assoclated samples Me20395: $81550-5$, F81550-9, F81550-18
Resuyts < Hom are shown as zero for calounathon purposes
(*) OUtsicie of QC immes
(ant) Aralyte not requested

MATRIX SPTRE RNO DURIMCAME RESULTS SUMMRY

> Login Wumber: E81550
> Accomr: ALequ- Alpha Amalytics
> Qroject: GRU Phase 2 ESA

Aluminum
Antimony

Arsenye	0.0	0.0	NC	0-20	0.0	1900	2000	35.0	80-120
Bartum	62.8	65.5	4.2	$0-20$	62.8	2090	2000	101. 4	80-120
Beryturum									
Cacmium	0.0	0.0	NC	$0-20$	0.0	48.7	50	97.4	$80-120$
Calcium									
Chromium	13.3	11.8	4.3	0-20	1.13	209	200	98.9	80-120

Copper

Lron	ant							
mead	12.8	12.7	0.8	$0-20$	12.8	475	500	92.4

Magnesinm
Manganese anc

Molyoderum

Nicken
Potasskum

Selenium	0.0	0.0	NC	$0-20$	0.0	1930	2000	96.5	$00-120$
Siner	0.0	0.0	nC	$0-20$	0.0	46.8	50	93.6	$80-120$

Sodinm
strontium

Thativem

In

Titanium

Vanadium
Zinc

Aspochated semples ma20395: ES1550-5, $281550-9,781550-18$

Results < DD are showr as zeco for caloulation purposes
(*) Outside of QC Mimits
(v) Matrix Spike pec. outside of oc limits
(anr) Andiyte mot requested

WATEIX SPTEE AND DUPLTCATE RESULTS SUMMBR

					mber - B RU	$\begin{aligned} & 550 \\ & \text { Eyed } \\ & 2 B 6 \end{aligned}$
$\begin{aligned} & \text { QC Batch MD: MpqQ39s } \\ & \text { Marrim Type: Aqueous } \end{aligned}$						
Prep Dete:					04/18/12	
Metal	$\begin{aligned} & \text { T } 85 \\ & \text { orig } \end{aligned}$	MSD	$\begin{aligned} & \text { spik } \\ & \text { Marew } \end{aligned}$	$\% \mathrm{Rec}$	$\begin{aligned} & \mathrm{MSD} \\ & \text { RPD } \end{aligned}$	$\begin{aligned} & Q \infty \\ & \text { Lim } \end{aligned}$
Abumimem						
Antimony						
Arseric	0.0	1860	2000	93.0	2.1	20
gartum	62.8	2020	2000	97.9	3.4	20
Beryllinm						
Cabmium	0.0	47.3	50	94.6	2.9	20
Caicium						
Chromium	11.3	202	200	35.4	3.4	20
Cobalt						
copper						
rron	ant					
Lexa	12.8	466	500	90.6	1.9	20
Magnesium						
Manganese	antr					
Molybdenum						
Nickel						
Porassium						
Selenimm	0.0	1880	2000	94.0	2.6	20
Stiver	0.0	45.4	50	90.8	3.9	20
sodium						
Strontiam						
Thallium						
Tin						
Titanium						
Vanachum						
2 noc						
pesults < WI ate shown as zero for caloulation purposes (*) Owtside of gC inmite (M) Matrix Spike kec. Outside of oc limits (anc) Analyte not requested						

Herhous: Swate botom
Unas: na/
Unats: igh/
-

${ }_{\text {impt }}^{c}$

t

Au*

Antimony

Brsente	2050	2000	102.5	$80-120$
Barlum	2070	2000	103.5	$80-120$
Beryllum				
Cadmium	50.4	50	100.8	$80-120$
Calcium				
Chromium	204	200	102.0	$80-120$

Cobzlt
Copper

Iron	anx			
Lead	483	500	96.6	$80-120$

Magnesium
*anganase
$\operatorname{an} 2$
Molybdenum
Nuckel

Potass.um
Selenium $2050 \quad 2000 \quad 102.5 \quad 80-120$

Siver	48.8	50	97.6	$80-120$

Sodium
strontium

Thad 11 um
7 in

Thtanimm
Vamadium
zinc

Associzted samyabs Ma20395: E91550-5, E81550-9, E85550-18

Resulte < Dhe are shomn as zero fox caloulation purooees
(*) Outsiobe of QC akmeb
(anc) Analyte not requested

SEREAL DHUTHM RESUKTS SUMMARY

Foon Number: EP1550
acounc: Amprs - Mpha Anevytics profect: GRU ehase 2 esk

Alumantam
Antimony

Arsenic	0.00	0.00	Ne	$0-10$
Barbum	62.8	69.4	10.5	(a) $0-10$

Beryllinm
Cadmbum
0.00
0.00 NC
$0-10$
calctum
Chromium 11.3 11.4 0.9 0-10

Cobale

Copere
Tron anr

Lead	12.3	22.1	5.5	$0-10$

Magnesfum

Manganese ans
Molybdenum

Mcice.
porasstum

Selenium	0.00	0.00	NC	$0-10$
Silver	0.00	0.00	NC	$0-10$

Sodium
strontium

Thalinum

In

Tiranium

Vanactum
$\operatorname{lin} \alpha$

A3sociates 3amples My20395: ma1550-5. F81550-9, 581550-18

Results < DDw are shom as zero for caloulation purposes
*) Outside of QC Umits
(ant) Analyte not reguested
(a) percent difference acceptable due to low intuby sample concentration (a so times Tht

POST DIGESTATE SPTKE SUMMRY
ocin Nmber: P81550
Account: Ampha - Alpha malytics Project: GRy Phase 2 Gsk

> BMAK RESUKTS SUMREX
> Part 2 - Method Blanke
> begin Mumber: Fe1550
> Accoun: EEEHA - Apha Anclytics
> Project: QRU Phase 2 ESA

togin wamber: r81550
Awcount: Alphat - Apha Mnalytics project: GTU bhase 2 ESG

Associated Famples MP20348: E81550-5, F81550-9, P81550-18
Results < Tole are shown as zero fow calcubation putposes
(*) Outside of QC Limite
(v) Matrix gpike Rec. outstie of QC Limites
(any) Analyte mot requested

MARPX SPTKE ANO DUPLACATE RESULTS SUMMARE

> Gogin Wumber: 88550
> Account: Apha - Abra Analymics
> Project: GpU phaas 2 ESA

Assochated semples mp20398: w81550-5, w81550-9, p81550-18

Results < mb are shomn as wero for calubation purposes
(*) Ou-side or QC Limits
(N) Ma-rix Splke Rec. outside of QC Iumts
(anc) Analyte not requested

> Login Number: E81550
> Accourc: AtyhA - Alpha Analywice
> Project: GRU Phase 2 ESA

sERTAD DTUTTON RESULTE SUMMRE

Login Number: 81550
Account: Arpha - Alpha Abelytios Project: GRU Phase 2 gSA

> BHANE RESULTS SUMWARY Part 2 - Method Blanks
> Login Mmber: 881550
> Account: Arefa - Apha Analytics Project: GRU Phase 2 EsA

MARMX SPRKE AMD DUPLECAEE RESURTS SUMMRY

> Togin Number: FB1550
> Accound : ALPrA - Apha Analytios project: GRy Phase 2 esh

 10, $281550-11, \operatorname{F1550-12,~E81550-13,~581550-14,~281550-15,~581550-15,~581550-17~}$

Results < TDt are shown as wero for caloudation purposes
(*) Outsice of ge himites
(w) Matrix Spike Rec. Outside of pe In its
(any) Analyte not requested

SQTKE Bugnk AND LAB CORTROL SAMELE SUMMRRY

> woin Number: 781550
> Accent: KMEH - Apha mbaytics project: GRU Phase 2 rss

SERMA DLUUTION EESULTS SUMMARY

fogin Number: Eg1550

Account: ALPha - Nipha Analytics project: Grt phase 2 psa

Qc gatch ID: Mezotho	Methods: SM846 747Es
Matrix rype: sompe	Mnits: 1 g/i

Prep Date: 04/20/11

	Eeas50-1		Q
Metar	Otiginar Sot 1:5	80\%mer	yumits

Assochated samples Me20410: P81550-1, F81550-2, E81550-3, E81550-4, 1881550-6, F81550-7, 581550-8, 58155010, E81550-31, $581550-12, ~ E 81550-13, ~ E 81550-14, ~ ש 81550-15, ~ 281550-16, ~ 581550-17$

Results \quad IDL are shom as zero for calculation purposes
(*) Outside of oc limits
(anr) analyte not requested
(a) Percent difference acceptable due to low inithal sample concentration (< so cimes Int).

Alpha Analytics, Inc.

An Environmental Laboratory
9645 E. Colonial Dr., Suite 114
Orlando, Florida 32817

ALPHA ANALYTICS, INC.
 REPORT OF ANALYTICAL RESULTS

TO: Perry Hubbard
ECT, Inc.
3701 NW 98th St.
Gainesville, FL 32606
RE: GRU Phase II ESA (110059-0100)
This report contains results of analyses of the samples received under your work I.D. referenced above. The results relate only to these samples and the report may not be reproduced except in full without the written permission of the laboratory. Initial QA/QC information is listed below. More extensive information may be found in the Case Narrative.

NUMBER OF SAMPLES: (16) Soils (2) Groundwaters
DATE OF SAMPLING: 4/14/11
DATE OF RECEIPT IN LAB: 4/15/11

Our laboratory is NELAC certified by the Florida Department of Health, and the results meet all requirements of the NELAC Standards unless clearly noted in the report. Please contact me if you have any questions. We very much appreciate your business. NELAC Certification \#E83806.

John Bowers
Laboratory Director
407-382-5742
(jbowers@alphaanalyticsorlando.com)

ALPHA ANALYTICS REPORT OF QUALITY ASSURANCE/QUALITY CONTROL

CASE NARRATIVE

Client: ECT, Inc.
Project Name, \#: GRU Phase II ESA, 110059-0100
Alpha Analytics ID \#: 11-04-031

1. Samples were received into the laboratory at a temperature of 2 degrees C.
2. Soil sample results are reported on a dry weight basis, unless noted here.
3. A statement of the uncertainty of the results is available on request.
4. All samples were received with sufficient sample volume, within method specific holding times, and in proper method specific containers unless noted here:
5. Metals analysis and analysis for PCBs were performed by Accutest Laboratories Southeast, NELAC \#E83510, and the results are under separate cover.

Randy J. Wesson
Quality Assurance Officer

The qualfier "L" denotes the value reported is above the calibration range. The actual value may be higher than the value given
The qualfier "Y" denotes that the reported value is between the MOL (Method Detection Limit) and the PQL (Practical Quantitation Limit)
The qualifer "U" denotes that the analyte was not present, and the value preceding the "U" is the MDL
Per FDEP recommendation, DI water is used instead of sodium bisulfate in low-level soil vials
$\left.\begin{array}{lcll}\text { Clent 1.D. } & \text { Method Blank } \\ \text { Apha I.D. } & & \\ \text { Date Sampled } & \text { 104031-19 }\end{array}\right)$

The qualfier "L" denotes the value repoted is above the calloration range. The atual value may be higher than the value given
The qualfer "p" denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit)
The qualfier "U" denotes that the analyte was not present, and the value preceding the "U" is the MDL
Per FDEP recommendation, DI water is used instead of sodum bisulfate in low-level soil vial:
Went I.D.
Wate Sampled
Date Analyzed
Dilution Factor
Matrix
Units (ppb)
\% Moisture

SB-22 @ 10'	SB-23 @ 8:
$1104031-5$	1104031.6
$4 / 14 / 11$	$4 / 14 / 11$
$4 / 15 / 11$	$4 / 15 / 11$
1	1
Sold	$50 / \mathrm{ld}$
$u g / \mathrm{kg}$	4 Kg
13.7	17.1

		MOL	POL		MOL	BOL		MDL	PQL		MOL	PQL	CAS H
1,1-Dichioroethane	0.50	0.5	5.8	0.50	0.5	6.0	0.54	0.5	6.1	0.5 U			
1.1-Dichloroethene	0.60	0.6	5.8	0.60	0.6	6.0	0.60	0.6	6.1	0.5 U	0.5	5.8 5.8	$\begin{aligned} & 75-34-3 \\ & 75.35-4 \end{aligned}$
1,1,1- Trichloroethane	0.80	0.8	5.8	0.30	0.8	5.0	0.90	0.0	6.1	0.8 U	0.6	5.8 5.8	$\begin{aligned} & 75-35-4 \\ & 71-55-6 \end{aligned}$
1,1,1,2-Tetrachloroethane	0.6 U	0.6	5.8	0.6 U	0.6	6.0	0.60	0.6	6.1	0.6 U	0.8	5.8	71-55-6 $630-20-6$
1,1,2,2-Tetrachloroethane	0.60	0.6	5.8	0.60	0.6	6.0	0.6 U	0.6	6.1	0.6 U	0.6 0.6	5.8 5.8	$630-20-6$ $79-34-5$
1,1,2-Trichloroethane	0.70	0.7	5.8	0.7 U	0.7	6.0	0.7 U	0.7	6.1	0.70	0.6 0.7	5.8 5.8	$79-34-5$ $79-00-5$
1,1-Dichloropropene	0.74	0.7	5.8	0.8 U	0.8	6.0	0.7 U	0.7	6.1	0.7 U	0.7	5.8	563-58-6
1,2-Dichloroethane	$0.5 U$	0.5	5.8	0.50	0.5	6.0	0.50	0.5	6.1	0.5 U	0.5	5.8	107-06-2
1,2-Dichloropropane	0.60	0.6	5.8	0.64	0.6	6.0	0.64	0.6	6.1	0.6 U	0.6	5.8	78-87-5
1,2,3-Trichlorobenzene	0.70	0.7	5.8	0.7 U	0.7	6.0	0.7 U	0.7	6.1	0.74	0.7	5.8	87-61-6
1,2,4-Trimethybenzene	0.70	0.7	5.8	0.7 U	0.7	6.0	0.70	0.7	6.2	0.7 U	0.7	5.8	$95-63 \cdot 6$
1,2-Dichiorobenzene	0.8 U	0.8	5.8	0.8 U	0.8	6.0	0.90	0.9	6.1	0.8 U	0.8	5.8 5.8	$95-63-6$ $95-50-1$
1,3,5-Trmethybenzene	0.8 U	0.8	5.8	0.8 U	0.8	6.0	0.9 U	0.9	6.1	0.8 U	0.8	5.8	108-67-8
1,3-Dichlorobenzene	0.60	0.6	5.8	0.6 U	0.6	6.0	0.6 U	0.6	6.1	0.6 U	0.6	5.8	108-73-1
1,3-Dichloropropane	0.64	0.6	5.8	0.6 U	0.6	6.0	0.6 U	0.6	6.1	0.60	0.6	5.8	142-28-9
1,4-Dichlorobenzene	0.9 U	0.9	5.8	1.0 U	1.0	6.0	1.0 U	1.0	6.1	0.9 U	0.9	5.8	$106-46-7$
2 Chlorotoluene	$0.8 \cup$	0.8	5.8	0.8 U	0.8	6.0	0.9 U	0.9	6.1	0.8 U	0.8	5.8	105-49-8
2,2-Dichioropropane	0.54	0.5	5.8	0.5 U	0.5	6.0	0.5 U	0.5	6.1	0.50	0.5	5.8	594-20-7
Benzene	0.6 U	0.6	5.8	0.6 U	0.6	6.0	0.6 U	0.6	6.1	0.6 U	0.6	5.8	71-43-2
Bromobenzene	0.5 U	0.5	5.8	0.5 U	0.5	6.0	0.5 U	0.5	6.1	0.5 U	0.5	5.8	108-86-1
Bromochloromethane	0.74	0.7	5.8	0.7 U	0.7	6.0	0.7 U	0.7	6.1	0.70	0.7	5.8	74-97-5
Bromodichloromethane	0.5 U	0.5	5.8	0.5 U	0.5	6.0	0.5 U	0.5	6.1	0.5 U	0.5	5.8	75-27-4
Bromoform	0.6 U	0.6	5.8	0.6 U	0.6	6.0	0.6 U	0.6	6.1	0.6 U	0.6	5.8	75-25-2
Bromomethane	1.2 U	1.2	5.8	1.2 U	1.2	6.0	1.2 U	1.2	6.1	1.2 U	1.2	5.8	74-83-9
C-1,2-Dichloroethene	0.5 U	0.5	5.8	0.5 U	0.5	6.0	0.5 U	0.5	5.1	0.5 U	0.5	5.8	74-83-9 $156-59-2$
Carbon tetrachioride	0.5 U	0.5	5.8	0.5 U	0.5	6.0	0.5 U	0.5	6.1	0.5 U	0.5	5.8	56-23-5
Chiorobenzene	0.6 U	0.6	5.8	0.6 U	0.6	6.0	0.6 U	0.6	6.1	0.6 U	0.6	5.8	108-90-7
Whoroethane	1.4 U	1.4	5.8	1.4 U	1.4	6.0	1.5 U	1.5	6.1	1.4 U	1.4	5.8	75-00-3
Chioromethane	0.7 U	0.7	5.8	0.7 U	0.7	6.0	0.7 U	0.7	6.1	0.7 U	0.7	5.8	67-66-3
cis-1,3-Dichloropropene	0.5	1.0	5.8 5.8	1.14	1.1	6.0	1.1 U	1.1	6.1	1.0 U	1.0	5.8	74-87-3
Dibromochloromethane	0.6 U	0.6	5.8	0.6 U	0.5	6.0 6.0	0.5 U	0.5	6.1	0.5 U	0.5	5.8	10061-01-5
Dichlorodifluoromethane	1.3 U	1.3	5.8	1.3 U	1.3	6.0 6.0	1.3 U	0.6 1.3	6.1	0.6 U 1.3 U	0.6 1.3	5.8 5.8	124-48-1
Ethybenzene	0.7 U	0.7	5.8	0.7 U	0.7	6.0	0.7 U	0.7	6.1	1.3 U	1.3	5.8 5.8	75-71-8 $100-41-4$
Isopropylbenzene	$0.6 U$	0.6	5.8	0.6 U	0.6	6.0	0.6 U	0.6	6.1	0.6 U	0.6	5.8 5.8	$100-41-4$ $98-82-8$
Methylene chloride	$0.8 \cup$	0.8	5.8	0.8 U	0.8	6.0	0.9 U	0.9	6.1	0.8 U	0.8	5.8	75-09-2
MTBE Naphthalene	0.6 U	0.6	5.8	0.6 U	0.6	6.0	0.6 U	0.6	6.1	0.6 U	0.6	5.8	1634-04-4
Naphthalene n -Butybenzene	0.6 U 0.9 U	0.6 0.9	5.8 5.8	0.6 U 1.0 U	0.6 1.0	6.0 6.0	0.6 U	0.6	6.1	0.6 U	0.6	5.8	91-20-3
n-Propylbenzene	0.7 U	0.7	5.8	1.0.7U	1.0 0.7	6.0 6.0	1.0 U 0.7 U	1.0 0.7	6.1	0.9 U 0.7 U	0.9	5.8 5.8	104-51-8
p-Isopropyltoluene	0.74	0.7	5.8	0.70	0.7	6.0	0.7 U	0.7	6.1	0.7 U 0.7 U	0.7	5.8 5.8	$103-65-1$ $99-87-6$
sec-Butybenzene	0.74	0.7	5.8	0.7 U	0.7	6.0	0.7 U	0.7	6.1	0.7 U	0.7	5.8	135-98-8
Styrene	0.5 U	0.5	5.8	0.5 U	0.5	6.0	0.5 U	0.5	6.1	0.5 U	0.5	5.8	100-42-5
tert-Butybenzene	0.6 U	0.6	5.8	0.6 U	0.6	6.0	0.6 U	0.6	6.1	0.6 U	0.6	5.8	$100-42-5$ $98-06-6$
Tetrachloroethene Toluene	0.74	0.7	5.8	0.7 U	0.7	6.0	0.7 U	0.7	6.1	0.74	0.7	5.8	127-18-4
tr-1,2-Dichloroethene	0.7 U 0.9 U	0.7 0.9	5.8 5.8	0.7 U 1.0 U	0.7	6.0	0.70	0.7	6.1	0.70	0.7	5.8	108-88-3
t-1,3-Dichloropropene	0.6 U	0.6	5.8 5.8	0.6 U	1.0 0.6	6.0 6.0	1.0 U 0.6 U	1.0	6.1	0.9 U	0.9	5.8 5.8	156-60-5
Trichloroethene	0.50	0.5	5.8	0.5 U	0.5	6.0	0.50	0.5	6.1	0.6 U 0.5 U	0.6 0.5	5.8 5.8	10061-02-6
Trichlorofuoromethane	0.6 U	0.6	5.8	$0.6 U$	0.6	6.0	0.6 U	0.6	6.1	0.5 U	0.6	5.8	$\begin{aligned} & 79-01-6 \\ & 75-69-4 \end{aligned}$
Vinyl chloride	0.74	0.7	5.8	0.70	0.7	6.0	0.80	0.8	6.1	0.7 U	0.6	5.8 5.8	75-69-4
Total xylenes	0.5 U	0.5	5.8	0.50	0.5	6.0	0.50	0.5	6.1	0.5 U	0.5	5.8	1330-20-7
(Sur)Toluene-d8 (\%)	106			104			108						$\frac{\text { ceptable limits }}{70-130 \%}$
(Surr)4-BFB (\%)	109			86			112			$\begin{aligned} & 108 \\ & 108 \end{aligned}$			70-130\%

[^43]

[^44]| Hent I.D. | SB-12 10^{\prime} | | | SB-9 @ 8 | | | SB-10 @ 6^{+} | | | S8-29 © | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| -phal.0. | 1104031-14 | | | 1104031-15 | | | 1104031-16 | | | 1104031-1 | | | |
| Date Sampled | 4/14/11 | | | 4/14/11 | | | 4/14/11 | | | 4/14/11 | | | |
| Date Analyzed | 4/18/11 | | | 4/18/11 | | | 4/18/11 | | | 4/18/11 | | | |
| Dilution Factor | 1 | | | 1 | | | 418/14 | | | 4,10,11 | | | |
| Matrix | Solid | | | Solid | | | Solid | | | Solid | | | |
| Units (ppo) | $4 \mathrm{~g} / \mathrm{Kg}$ | | | wolkg | | | $u \mathrm{~g} / \mathrm{Kg}$ | | | $4 \mathrm{~g} / \mathrm{Kg}$ | | | |
| \% Moisture | 13.8 | | | 11.8 | | | | | | 13.6 | | | |
| | | MOL | POL | | MDL | POL | | MOL | PQL | | MDL | BOL | CAS ${ }^{\text {H }}$ |
| 1,1-Dichioroethane | 0.50 | 0.5 | 5.8 | 0.50 | 0.5 | 5.7 | 0.50 | 0.5 | 5.8 | 0.50 | 0.5 | 5.8 | 75-34-3 |
| 1,1- Dichloroethene | 0.60 | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.60 | 0.6 | 5.8 | 0.60 | 0.6 | 5.8 | 75-35-4 |
| 1,1,1- Trichoroethane | 0.8 U | 0.8 | 5.8 | 0.80 | 0.8 | 5.7 | 0.8 U | 0.8 | 5.8 | 0.80 | 0.8 | 5.8 | 71-55-6 |
| 1,1,1,2-Tetrachloroethane | 0.60 | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.64 | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 630-20-6 |
| 1,1,2,2-Tetrachloroethane | 0.60 | 0.6 | 5.8 | 0.60 | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.60 | 0.6 | 5.8 | $72.34-5$ |
| 1,1,2-Trichloroethane | 0.70 | 0.7 | 5.8 | 0.70 | 0.7 | 5.7 | 0.7 U | 0.7 | 5.8 | 0.70 | 0.7 | 5.8 | 79-00-5 |
| 1,1-Dichloropropene | 0.70 | 0.7 | 5.8 | 0.7 U | 0.7 | 5.7 | 0.70 | 0.7 | 5.8 | 0.70 | 0.7 | 5.8 | $563-58-6$ |
| 1,2-Dichoroethane | 0.50 | 0.5 | 5.8 | 0.5 U | 0.5 | 5.7 | 0.50 | 0.5 | 5.8 | 0.50 | 0.5 | 5.8 | 107-06-2 |
| 1,2-Dichoropropane | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.64 | 0.6 | 5.8 | 78-87-5 |
| 1,2,3-Trichlorobenzene | 0.74 | 0.7 | 5.8 | 0.70 | 0.7 | 5.7 | 0.7 U | 0.7 | 5.8 | 0.7 U | 0.7 | 5.8 | 87-61-6 |
| 1,2,4-Trimethybenzene | 0.70 | 0.7 | 5.8 | 0.70 | 0.7 | 5.7 | 0.7 U | 0.7 | 5.8 | 0.7 U | 0.7 | 5.8 | 95-63-6 |
| 1,2-Dichlorobenzene | 0.8 U | 0.8 | 5.8 | 0.80 | 0.8 | 5.7 | 0.8 U | 0.8 | 5.8 | 0.8 U | 0.8 | 5.8 | 95-50-1 |
| 1,3,5-Trimethylbenzene | 0.8 U | 0.8 | 5.8 | 0.80 | 0.8 | 5.7 | 0.8 U | 0.8 | 5.8 | 0.80 | 0.8 | 5.8 | 108-67-8 |
| 1,3-Dichlorobenzene | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 540-73-1 |
| 1,3-Dichloropropane | $0.6 U$ | 0.6 | 5.8 | 0.60 | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 142-28-9 |
| 1,4-Dichlorobenzene | 0.90 | 0.9 | 5.8 | 0.94 | 0.9 | 5.7 | 0.9 U | 0.9 | 5.8 | 0.9 U | 0.9 | 5.8 | 106-46-7 |
| 2-Chlorotoluene | 0.8 U | 0.8 | 5.8 | 0.8 U | 0.8 | 5.7 | 0.8 U | 0.8 | 5.8 | 0.8 U | 0.8 | 5.8 | 95-49-8 |
| 2,2-Dichloropropane | 0.5 U | 0.5 | 5.8 | 0.5 U | 0.5 | 5.7 | 0.5 U | 0.5 | 5.8 | 0.5 U | 0.5 | 5.8 | 594-20-7 |
| Benzene | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 71-43-2 |
| Bromobenzene | 0.5 U | 0.5 | 5.8 | 0.5 U | 0.5 | 5.7 | 0.5 U | 0.5 | 5.8 | 0.5 U | 0.5 | 5.8 | 108-86-1 |
| Bromochloromethane | 0.7 U | 0.7 | 5.8 | 0.70 | 0.7 | 5.7 | 0.7 U | 0.7 | 5.8 | 0.74 | 0.7 | 5.8 | 74-97-5 |
| Bromodichloromethane Bromoform | 0.5U | 0.5 | 5.8 5.8 | 0.5 U | 0.5 | 5.7 | 0.5 U | 0.5 | 5.8 | 0.54 | 0.5 | 5.8 | 75-27-4 |
| Bromoform | 0.6 U 1.2 U | 0.6 1.2 | 5.8 5.8 | 0.6 U | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 75-25-2 |
| C-1,2-Dichloroethene | 0.5 U | 0.5 | 5.8 5.8 | 1.1 U 0.5 | 1.1 0.5 | 5.7 5.7 | 1.2 U 0.5 | 1.2 | 5.8 | 1.2 U | 1.2 | 5.8 | 74-83-9 |
| Carbon tetrachloride | 0.5 U | 0.5 | 5.8 | 0.5 U | 0.5 | 5.7 | 0.5 U | 0.5 | 5.8 5.8 | 0.5 U | 0.5 | 5.8 5.8 | 156-59-2 |
| Chlorobenzene | 0.6 U | 0.6 | 5.8 | 0.50 | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 5.8 | 56-23-5 $108-90-7$ |
| 2. Whoroethane | 1.4 U | 1.4 | 5.8 | 1.4 U | 1.4 | 5.7 | 1.3 U | 1.3 | 5.8 | 1.4 U | 1.4 | 5.8 | 75-00-3 |
| - inloroform | 0.74 | 0.7 | 5.8 | 0.70 | 0.7 | 5.7 | 0.7 U | 0.7 | 5.8 | 0.7 U | 0.7 | 5.8 | 67-66-3 |
| Chloromethane | 1.00 | 1.0 | 5.8 | 1.0 U | 1.0 | 5.7 | 1.0 U | 1.0 | 5.8 | 1.0 U | 1.0 | 5.8 | 74-87-3 |
| cis-1,3-Dichloropropene | 0.5 U | 0.5 | 5.8 | 0.5 U | 0.5 | 5.7 | 0.5 U | 0.5 | 5.8 | 0.5 U | 0.5 | 5.8 | 10061-01-5 |
| Dibromochloromethane | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.5 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 124-48-1 |
| Dichlorodifluoromethane | 1.30 | 1.3 | 5.8 | 1.24 | 1.2 | 5.7 | $1.3 \cup$ | 1.3 | 5.8 | 1.3 U | 1.3 | 5.8 | 75-71-8 |
| Ethylbenzene | 0.7 U | 0.7 | 5.8 5.8 | 0.7 U | 0.7 | 5.7 | 0.7 U | 0.7 | 5.8 | 0.7 U | 0.7 | 5.8 | 100-41-4 |
| Isopropybenzene | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 98-82-8 |
| Methylene chloride MTBE | 0.8 U | 0.8 | 5.8 | 0.8 U | 0.8 | 5.7 | 0.8 U | 0.8 | 5.8 | 0.8 U | 0.8 | 5.8 | 75-09-2 |
| MTBE Naphthalene | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 1634-04-4 |
| Naphthalene | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 91-20-3 |
| n-Butybenzene | 0.9 U 0.7 U | 0.9 | 5.8 | 0.9 U | 0.9 | 5.7 | 0.9 U | 0.9 | 5.8 | 0.9 U | 0.9 | 5.8 | 104-51-8 |
| n--Isopropyltoluene | 0.70 0.70 | 0.7 0.7 | 5.8 | 0.7 U | 0.7 | 5.7 | 0.7 U | 0.7 | 5.8 | 0.74 | 0.7 | 5.8 | 103-65-1 |
| sec-Butybenzene | 0.7 U | 0.7 | 5.8 | 0.7 U 0.7 U | 0.7 0.7 | 5.7 5.7 | 0.7 U 0.7 U | 0.7 | 5.8 | 0.74 | 0.7 | 5.8 | 99-87-6 |
| Styrene | 0.5 U | 0.5 | 5.8 | $0.5 \cup$ | 0.5 | 5.7 | 0.5 U | 0.5 | 5.8 5.8 | 0.70 | 0.7 | 5.8 5.8 | $135-98-8$ $100-42-5$ |
| tert-Butybenzene | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 5.8 | $100-42-5$ $98-06-6$ |
| Tetrachloroethene | 0.7 U | 0.7 | 5.8 | 0.7 U | 0.7 | 5.7 | 0.7 U | 0.7 | 5.8 | 0.7 U | 0.7 | 5.8 | 127-18-4 |
| Toluene | 0.74 | 0.7 | 5.8 | 0.70 | 0.7 | 5.7 | 0.7 U | 0.7 | 5.8 | 0.7 U | 0.7 | 5.8 | 108-88-3 |
| tr-1,2-Dichloroethene | 0.9 U | 0.9 | 5.8 | 0.94 | 0.9 | 5.7 | 0.9 U | 0.9 | 5.8 | 0.90 | 0.9 | 5.8 | 156-60-5 |
| tr-1,3-Dichloropropene | 0.6 U | 0.6 | 5.8 | 0.50 | 0.6 | 5.7 | 0.6 U | 0.6 | 5.8 | 0.60 | 0.6 | 5.8 | 10061-02-6 |
| Trichloroethene | 0.5 U | 0.5 | 5.8 | 0.5 U | 0.5 | 5.7 | 0.5 U | 0.5 | 5.8 | 0.50 | 0.5 | 5.8 | 79-01-6 |
| Trichlorofuoromethane | 0.6 U | 0.6 | 5.8 | 0.6 U | 0.6 | 5.7 | 0.50 | 0.6 | 5.8 | 0.6 U | 0.6 | 5.8 | 75-69-4 |
| Vinyl choride | 0.74 | 0.7 | 5.8 | 0.74 | 0.7 | 5.7 | 0.70 | 0.7 | 5.8 | 0.70 | 0.7 | 5.8 | 75-01-4 |
| Total xylenes | 0.50 | 0.5 | 5.8 | 0.50 | 0.5 | 5.7 | 0.5 U | 0.5 | 5.8 | 0.50 | 0.5 | 5.8 | 1330-20-7 |
| (Sur)Toluene-d8 (\%) | 111 | | | 112 | | | 112 | | | 112 | | | ceptable Limit |
| (Surt)4-BFB (\%) | 123 | | | 119 | | | 121 | | | 121 | | | 70-130\% |

The qualifier "L" denotes that the reported value is above the calibration range. The actual value may be higher than the value given.
The qualifer I" denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit).
The qualifier "U" denotes that the analyte was not present, and the value preceding the "U" is the MOL.
Per FDEP recommendation, DI water is used instead of sodum bisulfate in fow-level soll vials

gllent L.D. lpha I.D. Date Sampled Date Analyzed Ditution Factor Matrix Units (ppb) \% Moisture	Method Blank 1104031-19 NA 4/15/11 1 Solid $4 g / \mathrm{Kg}$ NA			
		MOL	POL	CAS
1,1-Dichloroethane	0.40	0.4	5.0	75-34-3
1,1- Dichloroethene	0.5 U	0.5	5.0	75-35-4
1,1,1-Trichoroethane	0.70	0.7	5.0	71-55-6
1,1,1,2-Tetrachorocthane	0.50	0.5	5.0	630-20-6
1,1,2,2-Tetrachoroethane	0.50	0.5	5.0	$79.34-5$
1,1,2-Ttichloroethane	0.6 U	0.6	5.0	$79.00-5$
1,1-Dichloropropene	0.6 U	0.6	5.0	$563-58-6$
1,2-Dichloroethane	0.40	0.4	5.0	107-06-2
1,2- Dichloropropane	0.5 U	0.5	5.0	78.87 .5
1,2,3-Trichlorobenzene	0.6 U	0.6	5.0	$87-61-6$
1,24 -Trmethybenzene	0.6 U	0.6	5.0	$95 \cdot 636$
1,2-Dichlorobenzene	0.74	0.7	5.0	95-50-1
1,3,5-Thmethylbenzene	0.7 U	0.7	5.0	108-67-8
1,3-Dichlorobenzene	0.5 U	0.5	5.0	540-73-1
1,3-Dichloropropane	0.54	0.5	5.0	142-28-9
1,4 Dichlorobenzene	0.8 U	0.8	5.0	$106-46$-7
2 -Chlorotoluene	0.7 U	0.7	5.0	95-49-8
2,2-Dichloropropane	0.40	0.4	5.0	594-20-7
Benzene	0.50	0.5	5.0	71-43-2
Bromobenzene	0.4 U	0.4	5.0	$108.86-1$
Bromochloromethane	0.6 U	0.6	5.0	74.97 .5
Bromodichoromethane	0.4 U	0.4	5.0	75-27-4
Bromoform	$0.5 \cup$	0.5	5.0	75-25-2
Bromomethane	1.0 U	1.0	5.0	$74.83-9$
C-1,2-Dichloroethene	0.4 U	0.4	5.0	156-59-2
Carbon tetrachloride	0.4 U	0.4	5.0	56-23-5
Chlorobenzene	0.5 U	0.5	5.0	108-90-7
Waw Mhloroethane	1.2 U	1.2	5.0	75-00-3
hioroform	0.6 U	0.6	5.0	67-66-3
* Chloromethane	0.9 U	0.9	5.0	$74-87-3$
cis-1,3-Dichloropropene	0.4 U	0.4	5.0	10061-01-5
Dibromochloromethane	0.5 U	0.5	5.0	124-48-1
Dichlorodifuoromethane	1.10	1.1	5.0	75-71-8
Ethylbenzene	0.60	0.6	5.0	100-41-4
Isopropylbenzene	0.50	0.5	5.0	98-82-8
Methylene chloride	0.7 U	0.7	5.0	75-09-2
MTBE	0.5 U	0.5	5.0	1634-04-4
Naphthalene	0.50	0.5	5.0	91-20-3
n-Butylbenzene	0.8 U	0.8	5.0	104-51-8
n-Propylbenzene	0.6 U	0.6	5.0	$103-65-1$
p-Isopropyltoluene	0.6 U	0.6	5.0	99-87.6
sec-Butybenzene	0.6 U	0.6	5.0	135-98-8
Styrene	0.4 U	0.4	5.0	$100-42-5$
tert-Butybenzene	0.5 U	0.5	5.0	$98-06-6$
Tetrachloroethene	0.6 U	0.6	5.0	127×18.4
Toluene	0.60	0.6	5.0	$108-88.3$
tr-1,2-Dichloroethene	0.8 U	0.8	5.0	156-60-5
tr-1,3-Dichoropropene	0.50	0.5	5.0	10061-02-6
Trichoroethene	0.40	0.4	5.0	79-01-6
Trichorofuoromethane	0.50	0.5	5.0	$75-69-4$
Vinyl choride	0.60	0.6	5.0	75-014 4
Total xylenes	0.40	0.4	5.0	$1330-20.7$
				coptoble limits
(Sur) Tolvene-d8 (\%)	104			$70-130 \%$
(Surr)4-BFE (\%)	108			70.130\%

The qualfier "L" denotes that the repored value is above the calibration range. The artuat value may be higher than the value given,
The qualifier "i" denotes that the reported value s between the MDL (Method Detection Limit) and the PQL (Practical Quantation Limit)
The qualfier "U" denotes that the analyte was not present, and the value preceding the "U" is the MDL
Per FDEP recommendation, DI water is used instead of sodum bisulfate in low-level sol vials

Client I.D.	SB-21@ ${ }^{\text {\% }}$			S8-20 @ $\mathbf{2}^{\prime}$			SB-19 @ 6		
Alpha I.D.	1104031-1			1104031-2			1104031-3		
Date Sampled	4/14/11			4/14/11			4/14/11		
Date Extracted	4/15/11			4/15/11			4/15/11		
Date Analyzed	4/15/11			4/15/11			4/15/11		
Dilution Factor	1			1			1		
Matrix	Solid			Solid			Solid		
Units	$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{Kg}$		
Percent Moisture	27.4	MOL	POL	13.2	MOL	$P Q L$	7.27	MDL	PQL
Naphthalene	0.15	0.008	0.03	0.007 U	0.007	0.03	0.006 U	0.006	0.03
Acenaphthylene	0.006 U	0.006	0.03	0.005 U	0.005	0.03	0.004 U	0.004	0.03
1-Methyinaphthalene	0.22	0.008	0.03	0.007 U	0.007	0.03	0.006 U	0.006	0.03
2-Methylnaphthalene	1.1	0.006	0.03	0.005 U	0.005	0.03	0.12	0.004	0.03
Acenaphthene	0.88	0.01	0.03	0.01 U	0.01	0.03	0.53	0.01	0.03
Fluorene	0.003 U	0.003	0.03	0.002 U	0,002	0.03	0.002 U	0.002	0.03
Phenanthrene	1.8	0.004	0.03	0.003 U	0.003	0.03	0.25	0.003	0.03
Anthracene	0.33	0.003	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Fluoranthene	1.14	0.004	0.003	0.003 U	0.003	0.003	0.46 L	0.003	0.003
Pyrene	0.004 U	0.004	0.003	0.003 U	0.003	0.003	0.23 L	0.003	0.003
Benzo(a)anthracene	1.5 L	0.003	0.003	0.002 U	0.002	0.003	0.14	0.002	0.003
Chrysene	0.003 U	0.003	0.003	0.002 U	0.002	0.003	0.25 L	0.002	0.003
Benzo(b)fluoranthene	0.43 L	0.003	0.003	0.002 U	0.002	0.003	0.20 L	0.002	0.003
Benzo(k)fluoranthene	0.003 U	0.003	0.002	0.002 U	0.002	0.002	0.10 L	0.002	0.002
Benzo(a)pyrene	0.003 U	0.003	0.003	0.002 U	0.002	0.003	0.15 L	0.002	0.003
Dibenzo(a,h)anthracene	0.83 L	0.004	0.003	0.003 U	0.003	0.003	0.16	0.003	0.003
Benzo(g,h,i)perylene	1.8 L	0.003	0.003	0.002 U	0.002	0.003	0.18 L	0.002	0.003
Fideno(1,2,3-c,d)pyrene	0.004 U	0.004	0.003	0.003 U	0.003	0.003	0.11	0.003	0.003
Surrogate \% Recovery									
p-Terphenyl-d14	NR			90.2			87.2		

[^45]| Client I.D. | SB-18@ 6" | | | SB-22 @ 10' | | | SB-23 @ 8' | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alpha I.D. | 1104031-4 | | | 1104031-5 | | | 1104031-6 | | |
| Date Sampled | 4/14/11 | | | 4/14/11 | | | 4/14/11 | | |
| Date Extracted | 4/15/11 | | | 4/15/11 | | | 4/15/11 | | |
| Date Analyzed | 4/15/11 | | | 4/15/11 | | | 4/15/11 | | |
| Dilution Factor | 1 | | | 1 | | | ,15,11 | | |
| Matrix | Solid | | | Solid | | | Solid | | |
| Units | $\mathrm{mg} / \mathrm{Kg}$ | | | $\mathrm{mg} / \mathrm{Kg}$ | | | $\mathrm{mg} / \mathrm{Kg}$ | | |
| Percent Moisture | 20.8 | MOL | POL | 13.7 | MDL | $P O L$ | 17.1 | MOL | POL |
| Naphthalene | 0.008 U | 0.008 | 0.03 | 0.007 U | 0.007 | 0.03 | 0.007 U | 0.007 | 0.03 |
| Acenaphthylene | 0.005 U | 0.005 | 0.03 | 0.005 U | 0.005 | 0.03 | 0.11 | 0.005 | 0.03 |
| 1-Methylnaphthalene | 0.008 U | 0.008 | 0.03 | 0.007 U | 0.007 | 0.03 | 0.86 | 0.007 | 0.03 |
| 2-Methylnaphthalene | 0.005 U | 0.005 | 0.03 | 0.005 U | 0.005 | 0.03 | 0.005 U | 0.005 | 0.03 |
| Acenaphthene | 0.01 U | 0.01 | 0.03 | 0.01 U | 0.01 | 0.03 | 0.21 | 0.01 | 0.03 |
| Fluorene | 0.003 U | 0.003 | 0.03 | 0.002 U | 0.002 | 0.03 | 0.02 | 0.002 | 0.03 |
| Phenanthrene | 0.004 U | 0.004 | 0.03 | 0.003 U | 0.003 | 0.03 | 0.004 U | 0.004 | 0.03 |
| Anthracene | 0.003 U | 0.003 | 0.03 | 0.002 U | 0.002 | 0.03 | 0.002 U | 0.002 | 0.03 |
| Fluoranthene | 0.23 L | 0.004 | 0.003 | 0.003 U | 0.003 | 0.003 | 0.004 U | 0.004 | 0.003 |
| Pyrene | 0.09 | 0.004 | 0.003 | 0.003 U | 0.003 | 0.003 | 0.004 U | 0.004 | 0.003 |
| Benzo(a)anthracene | 0.05 | 0.003 | 0.003 | 0.002 U | 0.002 | 0.003 | 2.8 L | 0.002 | 0.003 |
| Chrysene | 0.06 | 0.003 | 0.003 | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 |
| Benzo(b)fluoranthene | 0.05 | 0.003 | 0.003 | 0.002 U | 0.002 | 0.003 | 0.53 L | 0.002 | 0.003 |
| Benzo(k)fluoranthene | 0.04 | 0.003 | 0.002 | 0.002 U | 0.002 | 0.002 | 0.35 L | 0.002 | 0.002 |
| Benzo(a)pyrene | 0.04 | 0.003 | 0.003 | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 |
| Dibenzo(a,h)anthracene | 0.03 | 0.004 | 0.003 | 0.003 U | 0.003 | 0.003 | 0.004 U | 0.004 | 0.003 |
| Benzo($g, h, i)$ perylene | 0.05 | 0.003 | 0.003 | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 |
| Indeno(1,2,3-c,d)pyrene | 0.04 | 0.004 | 0.003 | 0.003 U | 0.003 | 0.003 | 0.004 U | 0.004 | 0.003 |
| Surrogate \% Recovery | | | | | | | | | |
| p-Terphenyl-di4 | 67.1 | | | 98.3 | | | 102 | | |

[^46]| Client I.D. | SB-24@ 6' | | | SB-25@ ${ }^{\text {' }}$ | | | SB-26 @ 8 ${ }^{\text {c }}$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alpha 1.D. | 1104031-7 | | | 1104031-9 | | | 1104031-10 | | |
| Date Sampled | 4/14/11 | | | 4/14/11 | | | 4/14/11 | | |
| Date Extracted | 4/15/11 | | | 4/15/11 | | | 4/15/11 | | |
| Date Analyzed | 4/15/11 | | | 4/17/11 | | | 4/17/11 | | |
| Dilution Factor | 1 | | | 1 | | | 1 | | |
| Matrix | Solid | | | Solid | | | Solid | | |
| Units | $\mathrm{mg} / \mathrm{Kg}$ | | | $\mathrm{mg} / \mathrm{Kg}$ | | | $\mathrm{mg} / \mathrm{Kg}$ | | |
| Percent Moisture | 18.0 | MDL | $P Q L$ | 13.6 | MDL | $P O L$ | 8.53 | MDI | PQL |
| Naphthalene | 0.007 U | 0.007 | 0.03 | 0.007 U | 0.007 | 0.03 | 0.007 U | 0.007 | 0.03 |
| Acenaphthylene | 0.005 U | 0.005 | 0.03 | 0.005 U | 0.005 | 0.03 | 0.004 U | 0.004 | 0.03 |
| 1-Methylnaphthalene | 0.007 U | 0.007 | 0.03 | 0.007 U | 0.007 | 0.03 | 0.007 U | 0.007 | 0.03 |
| 2-Methylnaphthaiene | 0.005 U | 0.005 | 0.03 | 0.005 U | 0.005 | 0.03 | 0.004 U | 0.004 | 0.03 |
| Acenaphthene | 0.01 U | 0.01 | 0.03 | 0.01 U | 0.01 | 0.03 | 0.01 U | 0.01 | 0.03 |
| Fluorene | 0.002 U | 0.002 | 0.03 | 0.002 U | 0.002 | 0.03 | 0.002 U | 0.002 | 0.03 |
| Phenanthrene | 0.004 U | 0.004 | 0.03 | 0.003 U | 0.003 | 0.03 | 0.003 U | 0.003 | 0.03 |
| Anthracene | 0.002 U | 0.002 | 0.03 | 0.002 U | 0.002 | 0.03 | 0.002 U | 0.002 | 0.03 |
| Fluoranthene | 0.004 U | 0.004 | 0.003 | 0.003 U | 0.003 | 0.003 | 0.003 U | 0.003 | 0.003 |
| Pyrene | 0.004 U | 0.004 | 0.003 | 0.003 U | 0.003 | 0.003 | 0.003 U | 0.003 | 0.003 |
| Benzo(a)anthracene | 0.21 L | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 |
| Chrysene | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 |
| Benzo(b)fluoranthene | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 |
| Benzo(k)fluoranthene | 0.002 U | 0.002 | 0.002 | 0.002 U | 0.002 | 0.002 | 0.002 U | 0.002 | 0.002 |
| Benzo(a)pyrene | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 |
| Dibenzo(a, h) anthracene | 0.004 U | 0.004 | 0.003 | 0.003 U | 0.003 | 0.003 | 0.003 U | 0.003 | 0.003 |
| Benzo(g,h,i)perylene | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 | 0.002 U | 0.002 | 0.003 |
| Indeno($1,2,3-\mathrm{c}, \mathrm{d})$ pyrene | 0.004 U | 0.004 | 0.003 | 0.003 U | 0.003 | 0.003 | 0.003 U | 0.003 | 0.003 |
| Surrogate \% Recovery | | | | | | | | | |
| p-Terphenyl-d14 | 94.4 | | | 88.6 | | | 83.4 | | |

Surogate \% Recovery limits are: p-Terphenyl 66.1-120.

Client I.D.	SB-27 © 8'			SB-28 @ 8'			SB-11 @ 8		
Alpha I.D.	1104031-11			1104031-12			1104031-13		
Date Sampled	4/14/11			4/14/11			4/14/11		
Date Extracted	4/15/11			4/15/11			4/15/11		
Date Analyzed	4/17/11			4/17/11			4/17/11		
Dilution Factor	1			1			,		
Matrix	Solid			Solid			Solid		
Units	$\mathrm{mg} / \mathrm{kg}$			$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{Kg}$		
Percent Moisture	15.3	MDL	POL	7.93	MDL	POL	14.8	MOL	PQL
Naphthalene	0.007 U	0.007	0.03	0.007 U	0.007	0.03	0.007 U	0.007	0.03
Acenaphthylene	0.005 U	0.005	0.03	0.004 U	0.004	0.03	0.005 U	0.005	0.03
1-Methyinaphthalene	0.007 U	0.007	0.03	0.007 U	0.007	0.03	0.007 U	0.007	0.03
2-Methylnaphthalene	0.005 U	0.005	0.03	0.004 U	0.004	0.03	0.005 U	0.005	0.03
Acenaphthene	0.01 U	0.01	0.03	0.01 u	0.01	0.03	0.01 U	0.01	0.03
Fluorene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Phenanthrene	0.004 U	0.004	0.03	0.003 U	0.003	0.03	0.004 U	0.004	0.03
Anthracene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Fluoranthene	0.004 U	0.004	0.003	0.003 U	0.003	0.003	0.004 U	0.004	0.003
Pyrene	0.004 U	0.004	0.003	0.003 U	0.003	0.003	0.004 U	0.004	0.003
Benzo(a)anthracene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Chrysene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Benzo(b)fluoranthene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Benzo(k)fluoranthene	0.002 U	0.002	0.002	0.002 U	0.002	0.002	0.002 U	0.002	0.002
Benzo(a)pyrene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Dibenzo(a ,h)anthracene	0.004 U	0.004	0.003	0.003 U	0.003	0.003	0.004 U	0.004	0.003
Benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Indeno(1,2,3-c,d)pyrene	0.004 U	0.004	0.003	0.003 U	0.003	0.003	0.004 U	0.004	0.003
Surrogate \% Recovery									
p-Terphenyl-d14	91.9			84.4			79.4		

NR denotes that the surrogate recovery is not reponable due to matrix interterence.
The qualfier "L" denotes that the value reported is above the calbration curve.
The qualfer "I denotes that the reported value is between the MDL Method Detection Limit and the PQL (Practical Quantiation Limit)
The qualfier "U" denotes that the anavie was not detected, and the value preceding the "U" is the Mol
Surrogate \% Recovery limits are: p-Terpheny $66.1-120$.

Alpha Analytics, Inc. (407) 382-5742 NELAP \#E83806

Client I.D.	SB-12@10'			SB-9 @ 8'			SB-10 @ 6'		
Alpha I.D.	1104031-14			1104031-15			1104031-16		
Date Sampled	4/14/11			4/14/11			4/14/11		
Date Extracted	4/15/11			4/15/11			4/15/11		
Date Analyzed	4/17/11			4/17/11			4/17/11		
Dilution Factor	1			,			,		
Matrix	Solid			Solid			Solid		
Units	$\mathrm{mg} / \mathrm{kg}$			$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{Kg}$		
Percent Moisture	13.8	MDL	PQL	11.8	MDL	POL	14.0	MOL	POL
Naphthalene	0.006 U	0.007	0.03	0.006 U	0.007	0.03	0.006 U	0.007	0.03
Acenaphthylene	0.004 U	0.005	0.03	0.004 U	0.005	0.03	0.004 U	0.005	0.03
1-Methytnaphthalene	0.006 U	0.007	0.03	0.006 U	0.007	0.03	0.006 U	0.007	0.03
2-Methylnaphthalene	0.004 U	0.005	0.03	0.004 U	0.005	0.03	0.004 U	0.005	0.03
Acenaphthene	0.01 U	0.01	0.03	0.01 U	0.01	0.03	0.01 U	0.01	0.03
Fluorene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Phenanthrene	0.003 U	0.003	0.03	0.003 U	0.003	0.03	0.003 U	0.003	0.03
Anthracene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	0.002 U	0.002	0.03
Fluoranthene	0.003 U	0.003	0.003	0.003 U	0.003	0.003	0.003 U	0.003	0.003
Pyrene	0.003 U	0.003	0.003	0.003 U	0.003	0.003	0.003 U	0.003	0.003
Benzo(a)anthracene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Chrysene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Benzo(b)fluoranthene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Benzo(k)fluoranthene	0.002 U	0.002	0.002	0.002 U	0.002	0.002	0.002 U	0.002	0.002
Benzo(a)pyrene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Dibenzo(a , h)anthracene	0.003 U	0.003	0.003	0.003 U	0.003	0.003	0.003 U	0.003	0.003
Benzo($\mathrm{g}, \mathrm{h}, \mathrm{i}$) perylene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	0.002 U	0.002	0.003
Indeno(1,2,3-c,d)pyrene	0.003 U	0.003	0.003	0.003 U	0.003	0.003	0.003 U	0.003	0.003
Surrogate \% Recovery									
p-Terphenyl-d14	81.4			89.8			99.3		

NP denotes that the surrogate recovery is not reportable due to matrix interterence.
The qualfer "L" denotes that the value reported is above the calbration curve
The qualifer " " denotes that he reported value is beween the MOL (Method Detection Limit) and the PQL (Practical Quantitation imit
The qualifer "U" denotes that the anaiyte was not detected, and the value preceding the "U" is the Mot.
Surrogate \% Recovery imits are: p-Terpheny $66.1-120$.

Client I.D.	SB-29 @ 8 ${ }^{\text {c }}$			Blank			
Alpha I.D.	1104031-18			1104031-19			
Date Sampled	4/14/11			NA			
Date Extracted	4/15/11			4/15/11			
Date Analyzed	4/17/11			4/15/11			
Dilution Factor	1			1			
Matrix	Solid			Solid			
Units	$\mathrm{mg} / \mathrm{Kg}$			$\mathrm{mg} / \mathrm{Kg}$			
Percent Moisture	13.6	MDI	PQL	NA	MOL	PQ	CAS \#
Naphthalene	0.007 U	0.007	0.03	0.006 U	0.006	0.03	91-20-3
Acenaphthylene	0.005 U	0.005	0.03	0.004 U	0.004	0.03	208-96-8
1-Methylnaphthalene	0.007 U	0.007	0.03	0.006 U	0.006	0.03	90-12-0
2-Methylnaphthalene	0.005 U	0.005	0.03	0.004 U	0.004	0.03	91-57-6
Acenaphthene	0.01 U	0.01	0.03	0.009 U	0.009	0.03	83-32-9
Fluorene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	86-73-7
Phenanthrene	0.003 U	0.003	0.03	0.003 U	0.003	0.03	85-01-8
Anthracene	0.002 U	0.002	0.03	0.002 U	0.002	0.03	120-12-7
Fluoranthene	0.003 U	0.003	0.003	0.003 U	0.003	0.003	206-44-0
Pyrene	0.003 U	0.003	0.003	0.003 U	0.003	0.003	129-00-0
Benzo(a)anthracene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	56-55-3
Chrysene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	218-01-9
Benzo(b)fluoranthene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	205-99-2
Benzo(k)fluoranthene	0.002 U	0.002	0.002	0.002 U	0.002	0.002	207-08-9
Benzo(a)pyrene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	50-32-8
Dibenzo(a , h)anthracene	0.003 U	0.003	0.003	0.003 U	0.003	0.003	53-70-3
Benzo($(\mathrm{g}, \mathrm{h}, \mathrm{i})$ perylene	0.002 U	0.002	0.003	0.002 U	0.002	0.003	191-24-2
Indeno($1,2,3-\mathrm{c}, \mathrm{d}$)pyrene	0.003 U	0.003	0.003	0.003 U	0.003	0.003	193-39-5
Surrogate \% Recovery							
p-Terphenyl-d14	90.2			89.9			

NR denotes that the sumogate recovery is nof reportable due to matrix interference.
The qualifier " ${ }^{\text {" }}$ denotes that the value reported is above the calibration curve.
The qualifer "l" denotes that the reported value is beween the MDL (Method Detection Limit) and the PQL (Practical Quantitation L imt).
The qualtier "U" denotes that the anakte was not detected, and the value preceding the "U" is the MOL.
Sumogate \% Recovery limits are: p-Terpheny 66.1-120.

Client I.D.	SB-22@10'		SB-23 @ 8'		SB-24 @ 6'	
Alpha I.D.	1104031-5		1104031-6		1104031-7	
Date Sampled	4/14/11		4/14/11		4/14/11	
Date Extracted	4/15/11		4/15/11		4/15/11	
Date Analyzed	4/15/11		4/15/11		4/15/11	
Dilution Factor	1		1		,	
Matrix	Solid		Solid		Solid	
Units	$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$	
Percent Moisture	13.7		17.1		18.0	
MDL	3.5		3.6		3.7	
		POL		POL		POL
Total Petroleum Hydrocarbons	3.5 U	9.0	520 L	9.0	3.7 U	9.0
Surrogate \% Recovery						
OTP	87.3		NR		38.9	
C39/ Nonatriacontane	89.9		NR		69.6	

Client I.D.

Alpha I.D.
Date Sampled
Date Extracted
Date Analyzed
Dilution Factor
Matrix
Units
Percent Moisture
MDL
Total Petroleum Hydrocarbons
Surrogate \% Recovery
SB-25 @ 6'
$1104031-9$
$4 / 14 / 11$
$4 / 15 / 11$
$4 / 15 / 11$
1
Solid
$\mathrm{mg} / \mathrm{Kg}$
13.6
3.5

3.5 U

$90 L$

SB-26 @ 8'	SB-27 @ 8
$\mathbf{1 1 0 4 0 3 1 - 1 0}$	$1104031-11$
$4 / 14 / 11$	$4 / 14 / 11$
$4 / 15 / 11$	$4 / 15 / 11$
$4 / 15 / 11$	$4 / 15 / 11$
1	1
Solid	Solid
$\mathrm{mg} / \mathrm{Kg}$	$\mathrm{mg} / \mathrm{Kg}$
8.53	15.3
3.3	3.5

9.0
$3.3 \cup \quad \frac{P Q L}{9.0}$
$\frac{P Q L}{9.0}$

OTP
89.0
92.2

SB-28 @ 8'
1104031-12
4/14/11
4/15/11
4/15/11
1
Solid
$\mathrm{mg} / \mathrm{Kg}$
Percent Moisture
MDL
Total Petroleum Hydrocarbons
Surrogate \% Recovery
OTP
C39/ Nonatriacontane
Client I.D.
Date Sampled
Date Extracted
Date Analyzed
Dilution Factor
Matrix
Units
89.9

NR
69.6

NR denotes that the surrogate pecovery is not reportable due to matrix interference.
The qualtier "L" denotes that the value reported is above the calioration curve.
The qualifier "t" denotes that the reported value is between the MDL (Method Detection Limit) and the POL (Practical Quantitation Limit)
The qualifier "U" denotes that the analyte was not detected, and the value preceding the " U " is the MDL
Surrogate \% Recovery limits are: OTP 62-109 and C-39 60-118.

Client I.D.	SB-9 @ 8'		SB-10 @ 6'		SB-29 @ 8	
Alpha I.D.	1104031-15		1104031-16		1104031-18	
Date Sampled	4/14/11		4/14/11		4/14/11	
Date Extracted	4/15/11		4/15/11		4/15/11	
Date Analyzed	4/15/11		4/15/11		4/15/11	
Dilution Factor	1				,	
Matrix	Solid		Solid		Solid	
Units	$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$		$\mathrm{mg} / \mathrm{Kg}$	
Percent Moisture	11.8		14.0		13.6	
MDL	3.4		3.5		3.5	
		PQL		POL		PQL
Total Petroleum Hydrocarbons	3.40	9.0	3.5 U	9.0	3.5 U	9.0
Surrogate \% Recovery						
OTP	75.8		73.6		68.1	
C39/ Nonatriacontane	99.3		78.7		88.9	

Client I.D.	Blank	
Alpha I.D.	$1104031-19$	
Date Sampled	NA	
Date Extracted	$4 / 15 / 11$	
Date Analyzed	$4 / 15 / 11$	
Dilution Factor	1	
Matrix	Solid	
Units	$\mathrm{mg} / \mathrm{Kg}$	
Percent Moisture	NA	
MDL	3.0	
		$\underline{P Q L}$
Total Petroleum Hydrocarbons	3.0 U	9.0
Surrogate \% Recovery	76.4	
OTP	93.4	
C39/ Nonatriacontane		

NR denotes that the surrogate recovery is not reportable due to matrix interference.
The qualitier " L " denotes that the value reported is above the calibration curve
The qualifier "I" denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit).
The qualifier "U" denotes that the analyte was not detected, and the value preceding the "U" is the MDL.
Surrogate \% Recovery limts are: OTP 62-109 and C-39 60-118.

The qualifier "L" denotes the value reported is above the calloration range. The actual value may be higher than the value given. The qualifer "" denotes that the reported vaiue is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit). The qualifier " U " denotes that the analyte was not present, and the value preceding the " U " is the MDL.

The qualfier "L" denotes the value report is above the calbration range. The actual value may be higher than the value given
The qualifer "i" denotes that the reported value is between the MOL (Method Detection Limt) and the PQL (Practical Quantitation Limit) The qualifer "U" denotes that the gnalyte was not present, and the vatue preceding the " U " is the MDL.

Client I.D.	S8-24			SB-10			Blank			
Alpha 1.D.	1104031-8			1104031-17			1104031-20			
Date Sampled	4/14/11			4/14/11			NA			
Date Extracted	4/15/11			4/15/11			4/15/11			
Date Analyzed	4/17/11			4/17/11			4/15/11			
Dilution Factor	1			1			1			
Matrix	Liquid			Liquid			Liquid			
Units	ug/t			ug/			ugh			
		MDL	PQt		MDL	$P Q L$		MOL	PQL	CASH
Naphthalene	0.15 U	0.15	2.0	0.15 U	0.15	2.0	0.15 U	0.15	2.0	91-20-3
Acenaphthylene	0.58 U	0.58	2.0	0.58 U	0.58	2.0	0.58 U	0.58	2.0	208-96-8
1-Methyinaphthalene	0.71 U	0.71	2.0	0.71 U	0.71	2.0	0.71 U	0.71	2.0	90-12-0
2-Methylnaphthalene	0.63 U	0.63	2.0	0.63 U	0.63	2.0	0.63 U	0.63	2.0	91-57-6
Acenaphthene	0.68 U	0.68	2.0	0.68 U	0.68	2.0	0.68 U	0.68	2.0	83-32-9
Fluorene	0.17 U	0.17	2.0	0.17 U	0.17	2.0	0.17 U	0.17	2.0	86-73-7
Phenanthrene	0.09 U	0.09	2.0	0.09 U	0.09	2.0	0.09 U	0.09	2.0	85-01-8
Anthracene	0.06 U	0.06	2.0	0.06 U	0.06	2.0	0.06 U	0.06	2.0	120-12-7
Fluoranthene	0.22 U	0.22	0.2	0.22 U	0.22	0.2	0.22 U	0.22	0.2	206-44-0
Pyrene	0.20 U	0.20	0.2	0.20 U	0.20	0.2	0.20 U	0.20	0.2	129-00-0
Benzo(a)anthracene	0.12 U	0.12	0.2	0.12 U	0.12	0.2	0.12 U	0.12	0.2	56-55-3
Chrysene	0.16 U	0.16	0.2	0.16 U	0.16	0.2	0.16 U	0.16	0.2	218-01-9
Benzo(b)fluoranthene	0.10 U	0.10	0.2	0.10 U	0.10	0.2	0.10 U	0.10	0.2	205-99-2
Benzo(k)fluoranthene	0.08 U	0.08	0.1	0.08 U	0.08	0.1	0.08 U	0.08	0.1	207-08-9
Benzo(a)pyrene	0.12 U	0.12	0.2	0.12 U	0.12	0.2	0.12 U	0.12	0.2	50-32-8
Dibenzo(a,h)anthracene	0.10 U	0.10	0.2	0.10 U	0.10	0.2	0.10 U	0.10	0.2	53-70-3
Benzo($g, h, i)$ perylene	0.18 U	0.18	0.2	0.18 U	0.18	0.2	0.18 U	0.18	0.2	191-24-2
Indeno(1,2,3-c,d)pyrene	0.15 U	0.15	0.2	0.15 U	0.15	0.2	0.15 U	0.15	0.2	193-39-5
Surrogate \% Recovery										
p-Terphenyl-d14	98.1			98.9			85.9			

NR denotes that the surrogate recovery is not reportable due to matrix interference.
The qualifier "L" denotes that the value reported is above the calibration curve.
The qualfier "]" denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantivation Limit).
The qualifier " U " denotes that the analyte was not detected, and the value preceding the " U " is the MDL
Surrogate \% Recovery limits are: o-Terphenvi 72.4-130.

Alpha Analytics, Inc.
TRPH (3510/ FL-PRO)

Client I.D.	SB-24		SB-10		Blank	
Alpha L.D.	1104031-8		1104031-17		1104031	
Date Sampled	4/14/11		4/14/11		NA	
Date Extracted	4/15/11		4/15/11		4/14/1	
Date Analyzed	4/15/11		4/15/11		4/14/1	
Dilution Factor	1				,	
Matrix	Liquid		Liquid		Liquid	
Units	mg / L		mg / L		mg / L	
MDL	0.20		0.20		0.20	
		PQL		POL		PQL
Total Petroleum Hydrocarbons	0.20 U	0.60	0.20 U	0.60	0.20 U	0.60
Surrogate \% Recovery						
OTP	76.3		84.2		79.6	
C39/ Nonatriacontane	82.6		67.7		63.5	

Alpha Analytics, Inc. (407)-382-5742

ANALYSIS DATE : SAMPLE ID \# :					MATRIX : QC BATCH ID:	$\begin{gathered} \text { SOIL } \\ 041511 \mathrm{~A} \end{gathered}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	LCS AMOUNT RECOVERED	$\begin{gathered} \text { LCS \% } \\ \text { RECOVERY } \end{gathered}$	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY
Vinyl chloride	0.0	20	25	129.4\%	70.0\%	130.0\%
1,1-Dichloroethene	0.0	20	24	122.3\%	70.0\%	130.0\%
MTBE	0.0	20	22	111.1\%	70.0\%	130.0\%
1,1- Dichloroethane	0.0	20	23	112.9\%	70.0\%	130.0\%
Chloroform	0.0	20	24	117.6\%	70.0\%	130.0\%
Carbon Tetrachloride	0.0	20	19	96.5\%	70.0\%	130.0\%
1,1,1-Trichloroethane	0.0	20	24	121.0\%	70.0\%	130.0\%
Benzene	0.0	20	23	114.2\%	70.0\%	130,0\%
Trichloroethene	0.0	20	25	124.9\%	70.0\%	130.0\%
1,2-Dichloropropane	0.0	20	22	112.2\%	70.0\%	130.0\%
Toluene	0.0	20	24	118.6\%	70.0\%	130.0\%
Tetrachloroethene	0.0	20	27	134.2\%	70.0\%	130.0\%
Chlorobenzene	0.0	20	24	120.6\%	70.0\%	130.0\%
Ethylbenzene	0.0	20	23	115.6\%	70.0\%	130.0\%
m,p-Xylenes	0.0	40	49	122.1\%	70.0\%	130.0\%
--Xylene	0.0	20	23	114.9\%	70.0\%	130.0\%
1,1,2,2-Tetrachloroethane	0.0	20	19	93.1\%	70.0\%	130.0\%
1,4-Dichlorobenzene	0.0	20	20	102.3\%	70.0\%	130.0\%

ANALYSIS DATE: 4/15/11
SAMPLE ID \# : 1002006 -1

MATRIX: SOIL QC BATCH ID: O41511A

COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	$\begin{gathered} \text { MS \% } \\ \text { RECOVERY } \end{gathered}$	$\begin{gathered} \text { MSD \% } \\ \text { RECOVERY } \end{gathered}$	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	MAXIMUM RPD
Vonyl chloride	0.0	20	27	25	133.7\%	126.5\%	5.5\%	70.0\%	130.0\%	20.0\%
1,1-Dichloroethene	0.0	20	24	23	118.7\%	114.4\%	3.6\%	70.0\%	130.0\%	20.0\%
Mtbe	0.0	20	22	22	109.3\%	107.9\%	1.3\%	70.0\%	130.0\%	20.0\%
1,1-Dichloroethane	0.0	20	23	22	114.1\%	109.4\%	4.2\%	70.0\%	130.0\%	20.0\%
Chloroform	0.0	20	24	24	120.1\%	118.1\%	1.7\%	70.0\%	130.0\%	20.0\%
Carbon Tetrachloride	0.0	20	21	19	105.6\%	96.6\%	8.9\%	70.0\%	130.0\%	20.0\%
1,1,1-Trichloroethane	0.0	20	25	23	124.7\%	116.8\%	6.5\%	70.0\%	130.0\%	20.0\%
4wne	0.0	20	23	23	116.0\%	113.0\%	2.6\%	70.0\%	130.0\%	20.0\%
Trichloroethene	0.0	20	25	24	124.3\%	121.7\%	2.1\%	70.0\%	130.0\%	20.0\%
1,2-Dichloropropane	0.0	20	23	22	114.4\%	110.4\%	3.5\%	70.0\%	130.0\%	20.0\%
Toluene	0.0	20	24	23	121.1\%	117.0\%	3.4\%	70.0\%	130.0\%	20.0\%
Tetrachloroethene	0.0	20	26	26	130.7\%	131.6\%	0.7\%	70.0\%	130.0\%	20.0\%
Chiorobenzene	0.0	20	25	24	122.7\%	119.5\%	2.6\%	70.0\%	130.0\%	20.0\%
Ethybenzene	0.0	20	23	23	117.1\%	114.0\%	2.7\%	70.0\%	130.0\%	20.0\%
m,p-Xylenes	0.0	40	49	49	121.7\%	121.5\%	0.2\%	70.0\%	130.0\%	20.0\%
o-xylene	0.0	20	23	23	117.1\%	113.0\%	3.6\%	70.0\%	130.0\%	20.0\%
1,1,2,2-Tetrachloroethane	0.0	20	21	20	103.3\%	98.6\%	4.7\%	70.0\%	130.0\%	20.0\%
1,4-Dichlorobenzene	0.0	20	21	18	102.8\%	91.7\%	11.4%	70.0\%	130.0\%	20.0\%

ANALYSIS DATE: SAMPLE ID \#:	4/15/11 SAND								MATRIX: QC BATCH ID:	$\begin{gathered} \text { SOIL } \\ 041511 \mathrm{~A} \end{gathered}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	$\begin{gathered} \text { MS \% } \\ \text { RECOVERY } \end{gathered}$	MSD \% RECOVERY	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	$\begin{gathered} \text { MAXIMUM } \\ \text { RPD } \end{gathered}$
Naphthalene	0.0	25.0	23.0	18.2	92.0\%	72.8\%	23.3\%	70.0\%	130.0\%	25.0\%
Fluorene	0.0	25.0	24.1	20.0	96.4\%	80.0\%	18.6\%	70.0\%	130.0\%	25.0\%
Phenanthrene	0.0	25.0	24.8	20.3	99.2\%	81.2\%	20.0\%	70.0\%	130.0\%	25.0\%
Anthracene	0.0	25.0	28.5	23.4	114.0\%	93.6\%	19.7\%	70.0\%	130.0\%	25.0\%
Fluoranthene	0.0	25.0	25.2	25.3	100.8\%	101.2\%	0.4\%	70.0\%	130.0\%	25.0\%
Pyrene	0.0	25.0	26.2	27.2	104.8\%	108.8\%	3.7\%	70.0\%	130.0\%	25.0\%
Benzo(a)anthracene	0.0	25.0	29.4	26.3	117.6\%	105.2\%	11.1\%	70.0\%	130.0\%	25.0\%
sene	0.0	25.0	31.5	28.5	126.0\%	114.0\%	10.0\%	70.0\%	130.0\%	25.0\%
Benzo(b)fluoranthene	0.0	25.0	29.6	31.9	118.4\%	127.6\%	7.5\%	70.0\%	130.0\%	25.0\%
Benzo(k)fluoranthene	0.0	25.0	30.2	31.5	120.8\%	126.0\%	4.2\%	70.0\%	130.0\%	25.0\%
Benzo(a)pyrene	0.0	25.0	31.7	28.9	126.8\%	115.6\%	9.2\%	70.0\%	130.0\%	25.0\%
Dibenzo(a, h)anthracene	0.0	25.0	28.2	26.5	112.8\%	106.0\%	6.2\%	70.0\%	130.0\%	25.0\%
Benzo(g, h, I) perylene	0.0	25.0	28.8	25.8	115.2\%	103.2\%	11.0\%	70.0\%	130.0\%	25.0\%
Indeno($1,2,3-\mathrm{c}, \mathrm{d}$) pyrene	0.0	25.0	30.9	25.6	123.6\%	102.4\%	18.8\%	70.0\%	130.0\%	25.0\%

Alpha Analytics, Inc. (407)-382-5742 NELAP \#E83806

FL-PRO
SPIKE RECOVERY REPORT

ANALYSIS DATE: SAMPLE ID \#:	4/15/11 SAND								MATRIX : QC BATCH ID:	$\begin{gathered} \text { SOIL } \\ 041511 \mathrm{~A} \end{gathered}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	MS \% RECOVERY	MSD \% RECOVERY	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	$\begin{aligned} & \text { MAXIMUM } \\ & \text { RPD } \\ & \hline \end{aligned}$
Total Petroum Hydrocarbons	0.0	3400	2896	3273	85.2\%	96.3\%	12.2\%	62\%	204\%	25.0\%

Alpha Analytics, Inc. (407)-382-5742

ANALYSIS DATE: SAMPLE ID \# :					$\begin{gathered} \text { MATRIX : } \\ \text { QC BATCH ID: } \end{gathered}$	$\begin{aligned} & \text { LQUID } \\ & 041511 \mathrm{~A} \end{aligned}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	LCS AMOUNT RECOVERED	$\begin{gathered} \text { LCS \% } \\ \text { RECOVERY } \\ \hline \end{gathered}$	LOWER LIMIT RECOVERY	JPPER LIMIT RECOVERY
Vinyl chloride	0.0	20	25	123.7\%	70.0\%	130.0\%
1,1 - Dichloroethene	0.0	20	22	112.1\%	70.0\%	130.0\%
MTBE	0.0	20	18	91.1\%	70.0\%	130.0\%
1,1-Dichloroethene	0.0	20	23	114.3\%	70.0\%	130.0\%
Chloroform	0.0	20	23	117.3\%	70.0\%	130.0\%
Carbon Tetrachloride	0.0	20	22	111.4\%	70.0\%	130.0\%
1,1,1- Trichloroethane	0.0	20	23	112.6\%	70.0\%	130.0\%
Benzene	0.0	20	23	115.7\%	70.0\%	130.0\%
Trichloroethene	0.0	20	21	103.9\%	70.0\%	130.0\%
1,2-Dichloropropane	0.0	20	22	110.6\%	70.0\%	130.0\%
Toluene	0.0	20	24	119.9\%	70.0\%	130.0\%
Tetrachloroethene	0.0	20	25	124.2\%	70.0\%	130.0\%
Chlorobenzene	0.0	20	26	128.8\%	70.0\%	130.0\%
Ethylbenzene	0.0	20	23	115.9\%	70.0\%	130.0\%
m,p-Xylenes	0.0	40	51	128.0\%	70.0\%	130.0\%
o-Xylene	0.0	20	24	118.4\%	70.0\%	130.0\%
1,1,2,2-Tetrachloroethane	0.0	20	31	156.0\%	70.0\%	130.0\%
1,4-Dichlorobenzene	0.0	20	17	86.5\%	70.0\%	130.0\%

EPA 8260
SPIKE RECOVERY REPORT

ANALYSIS DATE: 4/15/11

SAMPLE ID \# : MW

MATRIX : LIOUID

QC BATCH ID: 041511A

COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	$\begin{gathered} \text { MS \% } \\ \text { RECOVERY } \\ \hline \end{gathered}$	MSD \% RECOVERY	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	$\begin{gathered} \text { MAXIMUM } \\ \text { RPD } \\ \hline \end{gathered}$
Vinyl chloride	0.0	20	25	24	124.4\%	120.3\%	3.4\%	70.0\%	130.0\%	20.0\%
1,1-Dichloroethene	0.0	20	23	22	114.5\%	112.0\%	2.2\%	70.0\%	130.0\%	20.0\%
MTBE	0.0	20	19	20	94,7\%	98.8\%	4.3\%	70.0\%	130.0\%	20.0\%
1,1-Dichloroethane	0.0	20	23	23	114.7\%	112.8\%	1.7\%	70.0\%	130.0\%	20.0\%
Chloroform	0.0	20	24	24	120.9\%	118.9\%	1.7\%	70.0\%	130.0\%	20.0\%
Carbon Tetrachloride	0.0	20	22	22	110.2\%	109.1\%	1.0\%	70.0\%	130.0\%	20.0\%
1,1,1-Trichloroethane	0.0	20	22	22	111.9\%	112.3\%	0.4\%	70.0\%	130.0\%	20.0\%
ene	0.0	20	24	23	121.0\%	112.8\%	7.0\%	70.0\%	130.0\%	20.0\%
Trichloroethene	0.0	20	22	22	110.7\%	107.7\%	2.7\%	70.0\%	130.0\%	20.0\%
1,2- Dichloropropane	0.0	20	23	23	112.9\%	116.1\%	2.8\%	70.0\%	130.0\%	20.0\%
Toluene	0.0	20	24	23	119.0\%	114.3\%	4.1\%	70.0\%	130.0\%	20.0\%
Tetrachoroethene	0.0	20	24	23	118.5\%	116.4\%	1.7\%	70.0\%	130.0\%	20.0\%
Chlorobenzene	0.0	20	26	28	130.8\%	138.3\%	5.6\%	70.0\%	130.0\%	20.0\%
Ethybenzene	0.0	20	24	26	119.4\%	127.7\%	6.8\%	70.0\%	130.0\%	20.0\%
m,p-Xylenes	0.0	40	47	51	117.0\%	127.9\%	8.9\%	70.0\%	130.0\%	20.0\%
0-Xylene	0.0	20	25	23	125.6\%	114.8\%	9.0\%	70.0\%	130.0\%	20.0\%
1,1,2,2-Tetrachloroethane	0.0	20	30	33	150.6\%	163.2\%	8.1\%	70.0\%	130.0\%	20.0\%
1,4-Dichlorobenzene	0.0	20	22	26	111.5\%	131.1\%	16.1\%	70.0\%	130.0\%	20.0\%

MATRIX :	Liquid
QC BATCH ID:	041511 A

COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	LCS AMOUNT RECOVERED	LCS \% RECOVERY	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY
Naphthalene	0.0	25	20.0	80.0\%	70.0\%	130.0\%
Fluorene	0.0	25	18.6	74.4%	70.0\%	130.0\%
Phenanthrene	0.0	25	18.9	75.6\%	70.0\%	130.0\%
Anthracene	0.0	25	18.6	74.4\%	70.0\%	130.0\%
Fluoranthene	0.0	25	18.9	75.6\%	70.0\%	130.0\%
Pyrene	0.0	25	18.3	73.2\%	70.0\%	130.0\%
Benzo(a)anthracene	0.0	25	19.1	76.4\%	70.0\%	130.0\%
Chrysene	0.0	25	19.0	76.0\%	70.0\%	130.0\%
Benzo(b)fluoranthene	0.0	25	19.5	78.0\%	70.0\%	130.0\%
Benzo(k)fluoranthene	0.0	25	20.5	82.0\%	70.0\%	130.0\%
Benzo(a)pyrene	0.0	25	20.6	82.4\%	70.0\%	130.0\%
Dibenzo(a, h)anthracene	0.0	25	18.6	74.4\%	70.0\%	130.0\%
Benzo($9, \mathrm{~h}, \mathrm{I}$) perylene	0.0	25	18.2	72.8\%	70.0\%	130.0\%
Indeno(1,2,3-c, d)pyrene	0.0	25	19.2	76.8\%	70.0\%	130.0\%

$\begin{array}{cc}\text { MATRIX: } & \text { LIQUID } \\ \text { QC BATCH ID: } & 041511 A\end{array}$

COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	MS AMOUNT RECOVERED	MSD AMOUNT RECOVERED	$\begin{gathered} \text { MS \% } \\ \text { RECOVERY } \end{gathered}$	$\begin{gathered} \text { MSD \% } \\ \text { RECOVERY } \end{gathered}$	RPD	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY	MAXIMUM RPD
Naphthalene	0.0	25.0	24.3	23.7	97.2\%	94.8\%	2.5\%	70.0\%	130.0\%	25.0\%
Fluorene	0.0	25.0	21.7	19.4	86.8\%	77.6\%	11.2\%	70.0\%	130.0\%	25.0\%
Phenanthrene	0.0	25.0	19.0	19.2	76.0\%	76.8\%	1.0\%	70.0\%	130.0\%	25.0\%
Anthracene	0.0	25.0	18.8	18.7	75.2\%	74.8\%	0.5\%	70.0\%	130.0\%	25.0\%
Fluoranthene	0.0	25.0	21.7	21.1	86.8\%	84.4\%	2.8\%	70.0\%	130.0\%	25.0\%
Pyrene	0.0	25.0	21.1	21.6	84,4\%	86.4\%	2.3\%	70.0\%	130.0\%	25.0\%
Benzo(a)anthracene	0.0	25.0	22.2	24.4	88.8\%	97.6\%	9.4\%	70.0\%	130.0\%	25.0\%
ysene	0.0	25.0	23.1	25.8	92.4\%	103.2\%	11.0\%	70.0\%	130.0\%	25.0\%
Benzo(b)fluoranthene	0.0	25.0	22.9	25.0	91.6\%	100.0\%	8.8\%	70.0\%	130.0\%	25.0\%
Benzo(k)fluoranthene	0.0	25.0	24.0	25.2	96.0\%	100.8\%	4.9\%	70.0\%	130.0\%	25.0\%
Benzo(a)pyrene	0.0	25.0	24.1	26.2	96.4\%	104.8\%	8.3\%	70.0\%	130.0\%	25.0\%
Dibenzo(a, h)anthracene	0.0	25.0	22.4	23.9	89.6\%	95.6\%	6.5\%	70.0\%	130.0\%	25.0\%
Benzo($(, h, h$) perylene	0.0	25.0	21.4	23.0	85.6\%	92.0\%	7.2\%	70.0\%	130.0\%	25.0\%
Indeno (1,2,3-c,d)pyren	0.0	25.0	22.7	25.8	90.8\%	103.2\%	12.8\%	70.0\%	130.0\%	25.0\%

ANALYSIS DATE : $4 / 14 / 11$ SAMPLE ID \#: LCS					$\begin{aligned} & \text { MATRIX : } \\ & \text { QC BATCH ID: } \end{aligned}$	$\begin{aligned} & \text { Liquid } \\ & 041411 \mathrm{~A} \end{aligned}$
COMPOUND	SAMPLE AMOUNT	AMOUNT SPIKED	LCS AMOUNT RECOVERED	LCS \% RECOVERY	LOWER LIMIT RECOVERY	UPPER LIMIT RECOVERY
Total Petroleum Hydrocarbons	0.0	1700	1464	86.1\%	55.0\%	118.0\%

NALYSIS DATE: 4/14/11
SAMPLE ID \# : MW-3-20118

MATRIX : Licuid
QC BATCH ID: 041411A

MS MSD
SAMPLE AMOUNT AMOUNT AMOUNT MS \% MSD \% LOWER LIMIT UPPER LIMIT MAXIMUM
\qquad
101%
20.0%

Alpha Analytics
9645 E. Colonial Dr. Suite 114
Onando, Florida 32817
CHAIN-OF-CUSTODY RECORD

\qquad
∂ (407) 382-5742 • Fax (407) 382-7195

Technical Report for

Alpha Analytics
GRU Phase 2 ESA

110059-0100
Accutest Job Number: F81610

Sampling Date: 04/14/11

Report to:

```
Alpha Analytics
jbowers@alphaanalyticsorlando.com
ATTN: John Bowers
```

Total number of pages in report: 76

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Jean Dent-Smith 407-425-6700

Certifications: FL (DOH E83510), NC (573), NJ (FL002), MA (FL946), IA (366), LA (03051), KS (E-10327), SC, AK
This report shall not be reproduced. except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Table of Contents

- $1-$

Section 1: Sample Summary 3
Section 2: Sample Results 5
2.1:F81610-1:SB-21 @ $6^{\prime \prime}$ 6
2.2:F81610-2: SB-20@2' 7
2.3:F81610-3: SB-19@6" 8
2.4:F81610-4: SB-18 ($6^{\prime \prime}$ 9
2.5: F81610-5: SB-22@10 10
2.6:F81610-6: SB-23@8' 12
2.7:F81610-7: SB-24@6 14
2.8: F81610-8: SB-24 16
2.9:F81610-9: SB-25@6 18
2.10:F81610-10: SB-26@8' 20
2.11:F81610-11: SB-27@8' 22
2.12:F81610-12: SB-28@ @ 24
2.13:F81610-13: SB-11@8 26
2.14:F81610-14: SB-12@10' 27
2.15: F81610-15: SB-9 @ 8^{\prime} 28
2.16:F81610-16:SB-10@6' 29
2.17: F81610-17: SB-10 30
2.18: F81610-18: SB-29@ 8^{\prime} 31
 敩
3. Chain of Custody 34
Section 4: GC Semi-volatiles - QC Data Summaries 37
4.1: Method Blank Summary 38
4.2: Blank Spike Summary 40
4.3: Matrix Spike/Matrix Spike Duplicate Summary 42
 43
5. 1: Prep QC MP20402: As, Ba,Cd,Cr,Pb,Se,Ag 44
5.2: Prep QC MP20410: Hg 50
5. 5: Prep QC MP20411: Hg 55
s. 4 : Prep QC MP20412: As, Ba,Cd,Cr, Pb,Se,Ag 60
5.5:Prep QC MP20416: As, Ba,Cd,Cr,Pb,Se,Ag 66
5. F: Prep QC MP20429: Hg 72

Sample Summary

Alpha Analytics
GRU Phase 2 ESA
Project No: 110059-0100

Sample Number	Collected Date	Time By	Received	Matr Code	ix Type	Client Sample ID
F81610-1	04/14/11	08:15 LB	04/18/11	SO	Soil	SB-21@ ${ }^{\text {c }}$
F81610-2	04/14/11	08:30 LB	04/18/11	So	Soil	SB-20@ ${ }^{\prime}$
F81610-3	04/14/11	08:45 LB	04/18/11	SO	Soil	SB-19@ 6^{\prime}
F81610-4	04/14/11	08:50 LB	04/18/11	SO	Soil	SB-18@ $6^{\prime \prime}$
F81610-5	04/14/11	07:33 LB	04/18/11	SO	Soil	SB-22@ 0^{\prime}
F81610-6	04/14/11	09:57 LB	04/18/11	SO	Soil	SB-23@8
F81610-7	04/14/11	10:25 LB	04/18/11	SO	Soil	SB-24@6
F81610-8	04/14/11	10:46 LB	04/18/11	AQ	Ground Water	SB-24
F81610-9	04/14/11	11:16 LB	04/18/11	SO	Soil	SB-25@6
F81610-10	04/14/11	11:38 LB	04/18/11	SO	Soil	SB-26 (a) 8^{\prime}
F81610-11	04/14/11	$11: 58 \mathrm{LB}$	04/18/11	SO	Soil	SB-27@8
F81610-12	04/14/11	12:15 LB	04/18/11	SO	Soil	SB-28@ 8^{\prime}
F81610-13	04/14/11	13:48 LB	04/18/11	SO	Soil	SB-11@ 8^{\prime}

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary

Alpha Analytics
GRU Phase 2 ESA
Project No：110059－0100

Sample Number	Collected Date	Time By	Received	Matr Code	ix Type	Client Sample ID
F81610－14	04／14／11	14：10 LB	04／18／11	SO	Soil	SB－12＠10＇
F81610－15	04／14／11	14：37 LB	04／18／11	SO	Soil	SB－9＠ 8^{\prime}
F81610－16	04／14／11	15：00 LB	04／18／11	SO	Soil	SB－10＠${ }^{\text {a }}$
F81610－17	04／14／11	15：20 LB	04／18／11	AQ	Ground Water	SB－10
F81610－18	04／14／11	15：53 LB	04／18／11	SO	Soil	SB－29＠ $8^{\text {a }}$

Southeast
ACCLTEST
Lagoantontes

Sample Results

Report of Analysis

Client Sample ID:	SB-21 @ $6^{\prime \prime}$	
Lab Sample 1D:	F81610-1	Date Sampled: $04 / 14 / 11$
Matrix:	SO-Soil	Date Received: $04 / 18 / 11$ Percent Solids: 88.0
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic ${ }^{\text {a }}$	1.61	5.0	1.0	$\mathrm{mg} / \mathrm{kg}$	10	04/19/11	04/20/11	RS	SW846 6010C ${ }^{3}$	SW846 3050B ${ }^{4}$
Barium ${ }^{\text {a }}$	102	100	5.0	$\mathrm{mg} / \mathrm{kg}$	10	04/19/11	04/20/11	RS	SW8466010C ${ }^{3}$	SW846 3050B ${ }^{4}$
Cadmium ${ }^{\text {a }}$	0.50 U	2.0	0.50	$\mathrm{mg} / \mathrm{kg}$	10	04/19/11	04/20/11	RS	SW8466010C ${ }^{3}$	SW846 3050B ${ }^{4}$
Chromium ${ }^{\text {a }}$	26.0	5.0	0.50	$\mathrm{mg} / \mathrm{kg}$	10	04/19/11	04/20111	RS	SW846 6010C ${ }^{3}$	SW846 3050B ${ }^{4}$
Lead	6.9	1.0	0.050	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{4}$
Mercury	0.0089 U	0.089	0.0089	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW84674718 ${ }^{2}$	SW846 74718 ${ }^{5}$
Selenium ${ }^{\text {a }}$	2.0 U	10	2.0	$\mathrm{mg} / \mathrm{kg}$	10	04/19/11	04/20/11	RS	SW846 6010C ${ }^{3}$	SW846 3050B ${ }^{4}$
Silver ${ }^{\text {a }}$	0.50 U	5.0	0.50	$\mathrm{mg} / \mathrm{kg}$	10	04/19/11	04/20/11	RS	SW846 6010C ${ }^{3}$	SW846 3050B ${ }^{4}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Instrument QC Batch: MA8885
(4) Prep QC Batch: MP20402
(5) Prep QC Batch: MP20410
(a) Elevated reporting limit(s) due to matrix interference.
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-20@ 2^{\prime}	
Lab Sample ID:	F81610-2	Date Sampled: 04/14/11 Date Received: 04/18/11 Matrix:
SO-Sol	Percent Solids: 93.1	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.61	0.36	0.073	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C	SW846 3050B ${ }^{3}$
Barium	9.6	7.3	0.36	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 30500 ${ }^{3}$
Cadmium	0.036 U	0.15	0.036	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C	SW846 3050B ${ }^{3}$
Chromium	5.3	0.36	0.036	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Lead	4.1	0.73	0.036	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{\text {d }}$	SW846 3050B ${ }^{3}$
Mercury	0.017 I	0.090	0.0090	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW8467471B ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.16 I	0.73	0.15	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C	SW846 3050B ${ }^{3}$
Silver	0.036 U	0.36	0.036	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

7 of 76
A-M,
81010 $=4$

Client Sample ID: SB-19@ 6^{\prime}

Lab Sample ID:	F81610-3	Date Sampled: 04/14/11
Matrix:	SO - Soil	Date Received: $04 / 18 / 11$
		Percent Solids: 68.2

Project: GRU Phase 2 ESA
Percent Solids: 68.2

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic ${ }^{\text {a }}$	3.9	1.1	0.22	$\mathrm{mg} / \mathrm{kg}$	2	04/19/11	04/20/11	RS	SW846 6010C3	SW846 3050B ${ }^{4}$
Barium	20.8	11	0.54	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{4}$
Cadmium ${ }^{\text {a }}$	1.8	0.43	0.11	$\mathrm{mg} / \mathrm{kg}$	2	04/19/11	04/20/11	RS	SW8466010C ${ }^{3}$	SW846 3050B ${ }^{4}$
Chromium ${ }^{\text {a }}$	22.0	1.1	0.11	$\mathrm{mg} / \mathrm{kg}$	2	04/19/11	04/20/11	RS	SW8466010 ${ }^{3}$	SW846 3050B ${ }^{4}$
Lead ${ }^{\text {a }}$	36.9	2.2	0.11	$\mathrm{mg} / \mathrm{kg}$	2	04/19/11	04/20/11	RS	SW846 6010C ${ }^{3}$	SW846 3050B ${ }^{4}$
Mercury	0.093 I	0.12	0.012	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW84674713 ${ }^{2}$	SW8467471B ${ }^{5}$
Selenium ${ }^{\text {a }}$	1.8 I	2.2	0.43	$\mathrm{mg} / \mathrm{kg}$	2	04/19/11	04/20/11	RS	SW8466010C ${ }^{3}$	SW846 3050B ${ }^{4}$
Silver ${ }^{\text {a }}$	0.11 U	1.1	0.11	$\mathrm{mg} / \mathrm{kg}$	2	04/19/11	04/20/11	RS	SW846 6010C ${ }^{3}$	SW846 3050B ${ }^{4}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Instrument QC Batch: MA8885
(4) Prep QC Batch: MP20402
(5) Prep QC Batch: MP20410
(a) Elevated reporting limit(s) due to matrix interference.
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$
MDL $=$ Method Detection Limit

Client Sample ID:	SB-18 @ $6^{\prime \prime}$			
Lab Sample ID:	F81610-4		\quad	Date Sampled: 04/14/11
:---				
Matrix:				
SO-Soil				
Project:				

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	1.6	0.53	0.11	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Barium	35.4	11	0.53	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Cadmium	0.079 I	0.21	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C	SW846 3050B ${ }^{3}$
Chromium	4.7	0.53	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C 1	SW846 3050B ${ }^{3}$
Lead	48.5	1.1	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C	SW846 3050B ${ }^{3}$
Mercury	0.11	0.10	0.010	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW846 74718 ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.29 I	1.1	0.21	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Silver	0.053 U	0.53	0.053	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {- }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-22 @ 10		
Lab Sample ID:	F81610-5	Date Sampled:	$04 / 14 / 11$
Matrix:	SO-Soil	Date Received:	$04 / 18 / 11$
Method:	SW846 8082A SW846 3550C	Percent Solids: 85.8	
Project:	GRU Phase 2 ESA		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
Run\#1	XX055754.D	1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857	
Run \#2								

	Initial Weight
Run \#1	30.0 g

PCB List

CAS No.	Compound	Result	PQL	MDL	Units
12674-11-2	Aroclor 1016	7.8 U	19	7.8	ug/kg
11104-28-2	Aroclor 1221	9.7 U	19	9.7	ug kg
11141-16-5	Aroclor 1232	9.7 U	19	9.7	ug/kg
53469-21-9	Aroclor 1242	7.8 U	19	7.8	ug/kg
12672-29-6	Aroclor 1248	7.8 U	19	7.8	ug/kg
11097-69-1	Aroclor 1254	7.8 U	19	7.8	ug/kg
11096-82-5	Aroclor 1260	7.8 U	19	7.8	$\mathrm{ug} / \mathrm{kg}$
CAS No.	Surrogate Recoveries	Run\# 1	Run\# 2	Limits	
877-09-8	Tetrachloro-m-xylene	77\%			6\%
2051-24-3	Decachlorobiphenyl	82\%			7\%

$\mathrm{U}=$ Not detected MDL - Method Detection Limit	$\mathrm{I}=$ Result $>=$ MDL but $<\mathrm{PQL} \mathrm{J}=$ Estimated value
$\mathrm{PQL}=$ Practical Quantitation Limit	$\mathrm{V}=$ Indicates analyte found in associated method blank
$\mathrm{L}=$ Indicates value exceeds calibration range	$\mathrm{N}=$ Indicates presumptive evidence of a compound

Client Sample ID:	SB-22@10	
Lab Sample ID:	F81610-5	Date Sampled: $04 / 14 / 11$
Matrix:	SO-Soil	Date Received: $04 / 18 / 11$ Percent Solids: 85.8
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.97	0.44	0.088	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 30508 ${ }^{3}$
Barium	39.2	8.8	0.44	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 30500 ${ }^{3}$
Cadmium	0.044 U	0.18	0.044	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Chromium	8.4	0.44	0.044	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Lead	7.1	0.88	0.044	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010 ${ }^{1}$	SW846 30508 ${ }^{3}$
Mercury	0.078 I	0.090	0.0090	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW846 7471B ${ }^{2}$	SW846 7471B ${ }^{4}$
Selenium	0.18 U	0.88	0.18	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 30508 ${ }^{3}$
Silver	0.044 U	0.44	0.044	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20410
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit

[^47]| Client Sample ID: | SB-23 a 8 | | |
| :--- | :--- | :--- | :--- |
| Lab Sample ID: | F81610-6 | Date Sampled: $04 / 14 / 11$ | |
| Matrix: | SO-Soil | Date Received: $04 / 18 / 11$ | |
| Method: | SW846 8082A SW846 3550C | Percent Solids: 84.7 | |
| Project: | GRU Phase 2 ESA | | |

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run \#1	XX055753.D	1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857
Run \#2							

	Initial Weight	Final Volume
Run \#1	30.1 g	10.0 ml
Run $\# 2$		

PCB List

[^48]| Client Sample ID: | SB-23 @ 8^{\prime} | | |
| :--- | :--- | :--- | :--- |
| Lab Sample ID: | F81610-6 | Date Sampled:
 Date Received: $04 / 14 / 11$ | |
| Matrix: | SO - Soil | Percent Solids: 84.7 | |
| Project: | GRU Phase 2 ESA | | |

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.26 I	0.56	0.11	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{\text {a }}$	SW846 3050B ${ }^{3}$
Barium	8.11	11	0.56	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010 ${ }^{1}$	SW846 3050B ${ }^{3}$
Cadmium	0.056 U	0.22	0.056	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C 1	SW846 3050B ${ }^{3}$
Chromium	3.4	0.56	0.056	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C 1	SW846 3050B ${ }^{3}$
Lead	9.0	1.1	0.056	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 $3050 \mathrm{~B}^{3}$
Mercury	0.079 I	0.087	0.0087	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW846 7471B ${ }^{2}$	SW846 7471B ${ }^{4}$
Selenium	0.38 I	1.1	0.22	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{\text {l }}$	SW846 30508 ${ }^{3}$
Silver	0.056 U	0.56	0.056	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010 ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20411
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<$ MDL
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Report of Analysis

Client Sample ID:	SB-24 @ 6	
Lab Sample ID:	F81610-7	Date Sampled: 04/14/11
Matrix:	SO - Soil	Date Received: 04/18/11
Method:	SW846 8082A SW846 3550C	Percent Solids: 82.9
Project:	GRU Phase 2 ESA	

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run \#1	XX055755.D	1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857
Run \#2							

	Initial Weight	Final Volume
Run \#1	30.1 g	10.0 ml
Run \#2		

PCB List

CAS No.	Compound	Result	PQL	MDL	Units
12674-11-2	Aroclor 1016	8.0 U	20	8.0	ug/kg
11104-28-2	Aroclor 1221	10 U	20	10	ug/kg
11141-16-5	Aroclor 1232	10 U	20	10	ug/kg
53469-21-9	Aroclor 1242	8.0 U	20	8.0	ug kg
12672-29-6	Aroclor 1248	8.0 U	20	8.0	ug/kg
11097-69-1	Aroclor 1254	8.0 U	20	8.0	ug/kg
11096-82-5	Aroclor 1260	8.0 U	20	8.0	ug/kg
CAS No.	Surrogate Recoveries	Run\# 1	Run\# 2	Limits	
877-09-8	Tetrachloro-m-xylene	80\%			
2051-24-3	Decachlorobiphenyl	82\%			

[^49]| Client Sample ID: | SB-24 @ 6^{\prime} | |
| :--- | :--- | :--- |
| Lab Sample ID: | F81610-7 | Date Sampled: $04 / 14 / 11$ |
| Matrix: | SO - Soil | Date Received:

 Project: |
| GRU Phase 2 ESA | Percent Solids: 82.9 | |

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.48 I	0.60	0.12	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{\text {d }}$	SW846 30508 ${ }^{3}$
Barium	9.21	12	0.60	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010 ${ }^{1}$	SW846 3050 ${ }^{3}$
Cadmium	0.060 U	0.24	0.060	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Chromium	11.6	0.60	0.060	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 30508 ${ }^{3}$
Lead	14.0	1.2	0.060	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{\text {l }}$	SW846 30508 ${ }^{3}$
Mercury	0.50	0.096	0.0096	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW8467471B ${ }^{2}$	SW846 $7471 \mathrm{~B}^{4}$
Selenium	0.24 U	1.2	0.24	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010 ${ }^{1}$	SW846 30508 ${ }^{3}$
Silver	0.060 U	0.60	0.060	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20411
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit

[^50]| Client Sample ID: | SB-24 | | |
| :--- | :--- | :--- | :--- |
| Lab Sample ID: | F81610-8 | Date Sampled: | $04 / 14 / 11$ |
| Matrix: | AQ-Ground Water | Date Received: 04/18/11 | |
| Method: | SW846 8082A SW846 3510C | Percent Solids: n/a | |
| Project: | GRU Phase 2 ESA | | |

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run\#1	XX055775.D	1	$04 / 20 / 11$	NJ	$04 / 19 / 11$	OP36836	GXX858
Run\#2							

Run \#1	Initial Volume 1040 ml
Run Final Volume	

PCB List

$\mathrm{U}=$ Not detected $\quad \mathrm{MDL}-$ Method Detection Limit	$\mathrm{I}=$ Result $>=$ MDL but $<\mathrm{PQL} J=$ Estimated value
$\mathrm{PQL}=$ Practical Quantitation Limit	$\mathrm{V}=$ Indicates analyte found in associated method blank
$\mathrm{L}=$ Indicates value exceeds calibration range	$\mathrm{N}=$ Indicates presumptive evidence of a compound

Client Sample ID:	SB-24	
Lab Sample ID:	F81610-8	Date Sampled: 04/14/11 Date Received: Matrix:
AQ-Ground Water	Percent Solids: n/a	

Total Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.0 U	10	2.0	ug/1	1	04/20/11	04/20/11 DM	SW846 6010C ${ }^{1}$	SW846 3010 ${ }^{3}$
Barium	52.61	200	5.0	ug/	1	04/20/11	04/20/11 DM	SW846 6010C ${ }^{1}$	SW846 3010A ${ }^{3}$
Cadmum	1.0 U	5.0	1.0	ug/1	1	04/20/11	04/20/11 DM	SW846 6010C ${ }^{1}$	SW846 3010A ${ }^{3}$
Chromium	31.1	10	1.0	ug/	1	04/20/11	04/20/11 DM	SW846 6010C ${ }^{1}$	SW846 3010A ${ }^{3}$
Lead	1.51	5.0	1.0	ug/1	1	04/20/11	04/20/11 DM	SW846 6010C ${ }^{1}$	SW846 3010A ${ }^{3}$
Mercury	0.24 I	1.0	0.050	ug/1	1	04/22/11	04/22/11 LM	SW846 7470A ${ }^{2}$	SW846 7470A ${ }^{4}$
Selenium	2.0 U	10	2.0	ug/1	1	04/20/11	04/20/11 DM	SW846 6010C ${ }^{1}$	SW846 3010A ${ }^{3}$
Silver	1.0 U	10	1.0	ug/	1	04/20/11	04/20/11 DM	SW846 6010 ${ }^{\text {l }}$	SW846 3010A ${ }^{3}$

(1) Instrument QC Batch: MA8884
(2) Instrument QC Batch: MA8891
(3) Prep QC Batch: MP20412
(4) Prep QC Batch: MP20429
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-25@ 6^{\prime}	
Lab Sample ID:	F81610-9	Date Sampled: 04/14/11
Matrix:	SO - Soil	Date Received: 04/18/11
Method:	SW846 8082A SW846 3550C	Percent Solids: 84.7
Project:	GRU Phase 2 ESA	

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run \#1	XX055756.D	1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857
Run H2							

	Initial Weight	Final Volume
Run \#1	29.9 g	10.0 ml
Run \#2		

PCB List

CAS No.	Compound	Result	PQL	MDL	Units	Q
12674-11-2	Aroclor 1016					
$11104-28-2$	Aroclor 1221	7.9 U	20	7.9	$\mathrm{ug} / \mathrm{kg}$	
$11141-16-5$	Aroclor 1232	9.9 U	20	9.9	$\mathrm{ug} / \mathrm{kg}$	
$53469-21-9$	Aroclor 1242	7.9 U	20	9.9	$\mathrm{ug} / \mathrm{kg}$	
$12672-29-6$	Aroclor 1248	7.9 U	20	7.9	$\mathrm{ug} / \mathrm{kg}$	
$11097-69-1$	Aroclor 1254	$\mathrm{ug} / \mathrm{kg}$				
$11096-82-5$	Aroclor 1260	7.9 U	20	7.9	$\mathrm{ug} / \mathrm{kg}$	20
			7.9	$\mathrm{ug} / \mathrm{kg}$		
CAS No.	Surrogate Recoveries	Run\# 1	Run\# 2	Limits		
877-09-8	Tetrachloro-m-xylene	82%				
$2051-24-3$	Decachlorobiphenyl	87%		$44-126 \%$	$39-157 \%$	

$\mathrm{U}=$ Not detected \quad MDL - Method Detection Limit	$\mathrm{I}=$ Result $>=$ MDL but $<\mathrm{PQL} \mathrm{J}=$ Estimated value
$\mathrm{PQL}=$ Practical Quantitation Limit	$\mathrm{V}=$ Indicates analyte found in associated method blank
$\mathrm{L}=$ Indicates value exceeds calibration range	$\mathrm{N}=$ Indicates presumptive evidence of a compound

Client Sample ID:	SB-25 @ 6	
Lab Sample ID:	F81610-9	Date Sampled: Matrix:
SO-Soil	Date Received: Percent Solids: 04/18/11	
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.64	0.45	0.090	mg/kg	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Barium	6.91	9.0	0.45	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {d }}$	SW846 30508 ${ }^{3}$
Cadmium	0.045 U	0.18	0.045	mg/kg	1	04/19/11	04/19/11	RS	SW8466610C ${ }^{1}$	SW846 3050B ${ }^{3}$
Chromium	13.3	0.45	0.045	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{\text {I }}$	SW846 3050B ${ }^{3}$
Lead	13.4	0.90	0.045	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C	SW846 3050B ${ }^{3}$
Mercury	0.85	0.48	0.048	$\mathrm{mg} / \mathrm{kg}$	5	04/20/11	04/20/11	LM	SW846 7471B ${ }^{2}$	SW84674718 ${ }^{4}$
Selenium	0.20 I	0.90	0.18	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010 ${ }^{1}$	SW846 30508 ${ }^{3}$
Silver	0.045 U	0.45	0.045	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20411
$\mathrm{PQL}=$ Practical Quantitation Limit MDL $=$ Method Detection Limit

[^51]
Report of Analysis

Client Sample ID:	SB-26 0 8		
Lab Sample ID:	F81610-10	Date Sampled: 04/14/11	
Matrix:	SO-Soil	Date Received: $04 / 18 / 11$	
Method:	SW846 8082A SW8463550C	Percent Solids: 90.0	
Project:	GRU Phase 2 ESA		

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run \#1	XX055757.D	1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857
Run $\# 2$							

	Initial Weight	Final Volume
Run \#1	30.0 g	10.0 ml
Run \#2		

PCB List

CAS No.	Compound	Result	PQL	MDL	Units	Q
$12674-11-2$	Aroclor 1016					
$11104-28-2$	Aroclor 1221	7.4 U	19	7.4	$\mathrm{ug} / \mathrm{kg}$	
$11141-16-5$	Aroclor 1232	9.3 U	19	9.3	$\mathrm{ug} / \mathrm{kg}$	
$53469-21-9$	Aroclor 1242	7.4 U	19	9.3	$\mathrm{ug} / \mathrm{kg}$	
$12672-29-6$	Aroclor 1248	7.4 U	19	7.4	$\mathrm{ug} / \mathrm{kg}$	
$11097-69-1$	Aroclor 1254	7.4 U	19	7.4	$\mathrm{ug} / \mathrm{kg}$	
$11096-82-5$	Aroclor 1260	7.4 U	19	7.4	$\mathrm{ug} / \mathrm{kg}$	

CAS No.	Surrogate Recoveries	Run\# 1	Run\# 2	Limits
877-09-8	Tetrachloro-m-xylene	81%		$44-126 \%$
$2051-24-3$	Decachlorobiphenyl	87%	$39-157 \%$	

[^52]| Client Sample ID: | SB-26@ 8^{\prime} | |
| :--- | :--- | :--- |
| Lab Sample ID: | F81610-10 | Date Sampled: $04 / 14 / 11$ |
| Matrix: | SO-Soil | Date Received: $04 / 18 / 11$
 Percent Solids: 90.0 |
| Project: | GRU Phase 2 ESA | |

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.48	0.42	0.084	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Barium	11.9	8.4	0.42	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 $3050 \mathrm{~B}^{3}$
Cadmium	0.042 U	0.17	0.042	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 30508 ${ }^{3}$
Chromium	7.0	0.42	0.042	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C	SW846 30508 ${ }^{3}$
Lead	21.4	0.84	0.042	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010 C ${ }^{\text {d }}$	SW846 3050B ${ }^{3}$
Mercury	0.24	0.093	0.0093	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW846 7471B ${ }^{2}$	SW846 $7471 \mathrm{~B}^{4}$
Selenium	0.17 U	0.84	0.17	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {l }}$	SW846 30500 ${ }^{3}$
Silver	0.042 U	0.42	0.042	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20411
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit

[^53]| Client Sample ID: | SB-27@ 8^{\prime} | | |
| :--- | :--- | :--- | :--- |
| Lab Sample ID: | F81610-11 | Date Sampled: $04 / 14 / 11$ | |
| Matrix: | SO - Soil | Date Received: | $04 / 18 / 11$ |
| Method: | SW846 8082A | SW846 3550C | Percent Solids: 86.7 |
| Project: | GRU Phase 2 ESA | | |

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run $\# 1$	XX055760.D	1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857
Run $\$ 2$							

	Initial Weight	Final Volume
Run \#1	30.0 g	10.0 ml
Run \#2		

PCB List

[^54]| Client Sample ID: | SB-27@ 8 | |
| :--- | :--- | :--- |
| Lab Sample ID: | F81610-11 | |
| Matrix: | SO-Soil | Date Sampled: $04 / 14 / 11$
 Date Received: $04 / 18 / 11$
 Percent Solids: 86.7 |
| Project: | GRU Phase 2 ESA | |

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.14 I	0.41	0.082	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Barium	1.81	8.2	0.41	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010 ${ }^{\text {1 }}$	SW846 30508 ${ }^{3}$
Cadmium	0.041 U	0.16	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Chromium	8.3	0.41	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Lead	3.9	0.82	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Mercury	0.13	0.092	0.0092	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW8467471B ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.16 U	0.82	0.16	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Silver	0.041 U	0.41	0.041	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010 ${ }^{1}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20411
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Report of Analysis

Client Sample ID: SB-28@8 Lab Sample ID: F81610-12 Matrix: SO-Soil Method: SW846 8082A SW846 3550C Project: GRU Phase 2 ESA					Date Sampled: 04/14/11 Date Received: 04/18/11 Percent Solids: 88.6		
$\begin{aligned} & \text { Run \#1 } \\ & \text { Run } \# 2 \end{aligned}$	File ID XX055763.D	$\begin{aligned} & \text { DF } \\ & 1 \end{aligned}$	Analyzed 04/19/11	By	Prep Date 04/19/11	Prep Batch OP36829	Analytical Batch GXX857
Initial Weight Final Volume Run\#1 29.9 g 10.0 ml Run \#2							

PCB List

CAS No.	Compound	Result	PQL	MDL	Units
12674-11-2	Aroclor 1016	7.5 U	19	7.5	ug/kg
11104-28-2	Aroclor 1221	9.4 U	19	9.4	ug/kg
11141-16-5	Aroclor 1232	9.4 U	19	9.4	$\mathrm{ug} / \mathrm{kg}$
53469-21-9	Aroclor 1242	7.5 U	19	7.5	ug/kg
12672-29-6	Aroclor 1248	7.5 U	19	7.5	ug/kg
11097-69-1	Aroclor 1254	7.5 U	19	7.5	ug/kg
11096-82-5	Aroclor 1260	7.5 U	19	7.5	ug kg
CAS No.	Surrogate Recoveries	Run\# 1	Run\# 2	Limits	
877-09-8	Tetrachloro-m-xylene	79\%			
2051-24-3	Decachlorobiphenyl	83\%			

$\mathrm{U}=$ Not detected MDL - Method Detection Limit $\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{L}=$ Indicates value exceeds calibration range
$\mathrm{I}=$ Result $>=\mathrm{MDL}$ but $<\mathrm{PQL} \mathrm{J}=$ Estimated value
$V=$ Indicates analyte found in associated method blank
$\mathrm{N}=$ Indicates presumptive evidence of a compound

Report of Analysis
Page 1 of 1

Client Sample ID:	SB-28 @ 8^{\prime}	
Lab Sample ID:	F81610-12	Date Sampled: $04 / 14 / 11$
Matrix:	SO-Soil	Date Received: $04 / 18 / 11$ Percent Solids: 88.6
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed		Method	Prep Method
Arsenic	0.19 I	0.38	0.077	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010 ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Barium	3.31	7.7	0.38	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010 ${ }^{1}$	SW846 3050B ${ }^{3}$
Cadmium	0.038 U	0.15	0.038	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C	SW846 3050B ${ }^{3}$
Chromium	6.2	0.38	0.038	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010 ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Lead	7.7	0.77	0.038	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010 ${ }^{\text {l }}$	SW846 30508 ${ }^{3}$
Mercury	0.12	0.094	0.0094	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW8467471B ${ }^{2}$	SW8467471B ${ }^{4}$
Selenium	0.15 U	0.77	0.15	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Silver	0.038 U	0.38	0.038	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20411
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-11 @ 8^{\prime}	
Lab Sample ID:	F81610-13	Date Sampled: 04/14/11 Date Received: 04/18/11 Matrix:
SO-Soil	Percent Solids: 86.5	
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Arsenic	0.171	0.40	0.081	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 $3050 \mathrm{~B}^{3}$
Barium	2.9 I	8.1	0.40	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {a }}$	SW846 30508 ${ }^{3}$
Cadmium	0.040 U	0.16	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {I }}$	SW846 30508 ${ }^{3}$
Chromium	9.2	0.40	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C 1	SW846 3050B ${ }^{3}$
Lead	6.3	0.81	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010 C 1	SW846 3050B ${ }^{3}$
Mercury	0.15	0.095	0.0095	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW846 7471B ${ }^{2}$	SW846,7471B ${ }^{4}$
Selenium	0.16 U	0.81	0.16	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 3050B ${ }^{3}$
Silver	0.040 U	0.40	0.040	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010 ${ }^{1}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20411
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=$ MDL but $<\mathrm{PQL}$

Client Sample ID:	SB-12 @ 10	
Lab Sample ID:	F81610-14	
Matrix:	SO-Soil	Date Sampled: 04/14/11 Date Received: 04/18/11 Percent Solids: 87.0
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.82	0.49	0.098	mg/kg	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{1}$	SW84630508 ${ }^{3}$
Barium	23.3	9.8	0.49	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$
Cadmium	0.049 U	0.20	0.049	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{\text {1 }}$	SW846 30508 ${ }^{3}$
Chromium	7.9	0.49	0.049	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Lead	10.0	0.98	0.049	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW846 6010C ${ }^{1}$	SW846 30508 ${ }^{3}$
Mercury	0.24	0.093	0.0093	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20111 LM	SW846 7471日 ${ }^{2}$	SW846 7471B ${ }^{4}$
Selenium	0.20 U	0.98	0.20	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C !	SW846 3050B ${ }^{3}$
Silver	0.049 U	0.49	0.049	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11 RS	SW8466010C ${ }^{\text {- }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20411
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$U=$ Indicates a result $<$ MDL
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID:	SB-9 @ 8^{\prime}	
Lab Sample ID:	F81610-15	Date Sampled: 04/14/11
Matrix:	SO-Soil	Date Received: 04/18/11 Percent Solids: 87.5
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed	By	Method	Prep Method
Arsenic	0.241	0.43	0.085	mg/kg	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{\text {1 }}$	SW846 30508 ${ }^{3}$
Barium	6.0 I	8.5	0.43	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010 ${ }^{1}$	SW846 30508 ${ }^{3}$
Cadmium	0.043 U	0.17	0.043	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010C ${ }^{1}$	SW846 30508 ${ }^{3}$
Chromium	5.8	0.43	0.043	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{1}$	SW846 3050 ${ }^{3}$
Lead	8.1	0.85	0.043	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW846 6010C ${ }^{\text {d }}$	SW846 3050B ${ }^{3}$
Mercury	0.13	0.091	0.0091	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11	LM	SW846 74718 ${ }^{2}$	SW846 $7471 \mathrm{~B}^{4}$
Selenium	0.17 U	0.85	0.17	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010 ${ }^{\text {1 }}$	SW846 3050B ${ }^{3}$
Silver	0.043 U	0.43	0.043	$\mathrm{mg} / \mathrm{kg}$	1	04/19/11	04/19/11	RS	SW8466010 ${ }^{\text {l }}$	SW846 3050B ${ }^{3}$

(1) Instrument QC Batch: MA8880
(2) Instrument QC Batch: MA8883
(3) Prep QC Batch: MP20402
(4) Prep QC Batch: MP20411
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit

[^55]| Client Sample ID: | SB-10@ 6 | |
| :--- | :--- | :--- |
| Lab Sample ID: F81610-16
 Matrix: SO-Soil Date Sampled: $04 / 14 / 11$
 Date Received: $04 / 18 / 11$
 Percent Solids: 78.9
 Project: GRU Phase 2 ESA | | |

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.241	0.44	0.087	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW846 6010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Barium	5.3 I	8.7	0.44	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW846 6010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Cadmum	0.044 U	0.17	0.044	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW846 6010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Chromium	4.6	0.44	0.044	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW8466010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Lead	9.0	0.87	0.044	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW8466010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Mercury	0.40	0.099	0.0099	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW84674718 ${ }^{1}$	SW846 $7471 \mathrm{~B}^{3}$
Selenium	0.17 U	0.87	0.17	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW8466010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Silver	0.044 U	0.44	0.044	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW8466010C ${ }^{2}$	SW846 3050B ${ }^{4}$

(1) Instrument QC Batch: MA8883
(2) Instrument QC Batch: MA8889
(3) Prep QC Batch: MP20411
(4) Prep QC Batch: MP20416
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Accutest Laboratories
Report of Analysis
Page 1 of 1

Client Sample ID：	SB－10	
Lab Sample ID：	F81610－17	Date Sampled：04／14／11 Matrix：
AQ－Ground Water	Date Received：04／18／11 Percent Solids：n／a	
Project：	GRU Phase 2 ESA	

Total Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.0 U	10	2.0	ug／1	1	04／20／11	04／20／11 DM	SW8466010C ${ }^{\text {d }}$	SW846 3010A ${ }^{3}$
Barium	42.8 I	200	5.0	ug 1	1	04／20／11	04／20／11 DM	SW846 6010C ${ }^{\text {d }}$	SW846 3010A ${ }^{3}$
Cadmium	1.0 U	5.0	1.0	ug／1	1	04／20／11	04／20／11 DM	SW846 6010C ${ }^{1}$	SW846 3010A ${ }^{3}$
Chromium	20.9	10	1.0	ug／	1	04／20／11	04／20／11 DM	SW846 6010C！	SW846 3010A ${ }^{3}$
Lead	11.9	5.0	1.0	ug／1	1	04／20／11	04／20／11 DM	SW8466010C ${ }^{1}$	SW846 3010A ${ }^{3}$
Mercury	0.11 I	1.0	0.050	ug／1	1	04／22／11	04／22／11 LM	SW846 7470A ${ }^{2}$	SW846 7470A ${ }^{4}$
Selenium	2.0 U	10	2.0	ug／1	1	04／20／11	04／20／11 DM	SW846 6010C ${ }^{1}$	SW846 3010A ${ }^{3}$
Silver	1.0 U	10	1.0	ug／1	1	04／20／11	04／20／11 DM	SW846 6010 ${ }^{\text {l }}$	SW846 3010A ${ }^{3}$

（1）Instrument QC Batch：MA8884
（2）Instrument QC Batch：MA8891
（3）Prep QC Batch：MP20412
（4）Prep QC Batch：MP20429
$\mathrm{PQL}=$ Practical Quantitation Limit
MDL $=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Client Sample ID: SB-29 @ 8^{\prime} Lab Sample ID: F81610-18 Matrix: SO-Soil Method: SW846 8082A SW846 3550C Project: GRU Phase 2 ESA					Date Sampled: $04 / 14 / 11$ Date Received: $04 / 18 / 11$ Percent Solids: 85.9		
$\begin{aligned} & \text { Run \#1 } \\ & \text { Run \#2 } \end{aligned}$	File ID XX055764.D	$\begin{aligned} & \text { DF } \\ & 1 \end{aligned}$	Analyzed 04/19/11	By NJ	Prep Date $04 / 19 / 11$	Prep Batch OP36829	Analytical Batch GXX857
Initial Weight Run \#1 30.3 g Run \#2 							

PCB List

CAS No.	Compound	Result	PQL	MDL	Units
12674-11-2	Aroclor 1016	7.7 U	19	7.7	ug/kg
11104-28-2	Aroclor 1221	9.6 U	19	9.6	$\mathrm{ug} / \mathrm{kg}$
11141-16-5	Aroclor 1232	9.6 U	19	9.6	$\mathrm{ug} / \mathrm{kg}$
53469-21-9	Aroclor 1242	7.7 U	19	7.7	$\mathrm{ug} / \mathrm{kg}$
12672-29-6	Aroclor 1248	7.7 U	19	7.7	ug/kg
11097-69-1	Aroclor 1254	7.7 U	19	7.7	ug/kg
11096-82-5	Aroclor 1260	7.7 U	19	7.7	ug/kg
CAS No.	Surrogate Recoveries	Run\# 1	Run\# 2	Limits	
877-09-8	Tetrachloro-m-xylene	62\%		44-126\%	
2051-24-3	Decachlorobiphenyl	67\%		39-157\%	

$U=$ Not detected \quad MDL - Method Detection Limit
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{L}=$ Indicates value exceeds calibration range
$\mathrm{I}=$ Result $>=\mathrm{MDL}$ but $<\mathrm{PQL} \mathrm{J}=$ Estimated value
$V=$ Indicates analyte found in associated method blank
$\mathrm{N}=$ Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID:	SB-29@ 8°	
Lab Sample ID:	F81610-18	Date Sampled: 04/14/11
Matrix:	SO-Soil	Date Received: 04/18/11 Percent Solids: 85.9
Project:	GRU Phase 2 ESA	

Metals Analysis

Analyte	Result	PQL	MDL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	0.15 I	0.46	0.092	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW8466010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Barium	3.81	9.2	0.46	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW846 6010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Cadmium	0.046 U	0.18	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW846 6010 ${ }^{2}$	SW846 3050B ${ }^{4}$
Chromium	8.0	0.46	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW846 6010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Lead	12.8	0.92	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW846 6010C ${ }^{2}$	SW846 3050B ${ }^{4}$
Mercury	0.30	0.086	0.0086	$\mathrm{mg} / \mathrm{kg}$	1	04/20/11	04/20/11 LM	SW846 7471B ${ }^{\text {1 }}$	SW846 74718 ${ }^{3}$
Selenium	0.18 U	0.92	0.18	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW846 6010 ${ }^{2}$	SW846 3050B ${ }^{4}$
Silver	0.046 U	0.46	0.046	$\mathrm{mg} / \mathrm{kg}$	1	04/21/11	04/21/11 RS	SW846 6010C ${ }^{2}$	SW846 3050B ${ }^{4}$

(1) Instrument QC Batch: MA8883
(2) Instrument QC Batch: MA8889
(3) Prep QC Batch: MP20411
(4) Prep QC Batch: MP20416
$\mathrm{PQL}=$ Practical Quantitation Limit
$\mathrm{MDL}=$ Method Detection Limit
$\mathrm{U}=$ Indicates a result $<$ MDL
$\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

Southeast

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Certification Exceptions
- Chain of Custody

F81610: Chain of Custody
Page 1 of 3

F81610: Chain of Custody
Page 2 of 3

COOLER INFORMATION

CIT SEAL NOT PRESENT OR NOT INTACT CHAIN OF CUSTODY NOT RECEIVED (COC)
ANALYSIS REQUESTED IS UNCLEAR OR MISSING
SAMPLE DATES OR TMMES UNCLEAR OR MISSING
temperature criterla not met
wet ice present
TRIP BLANK INFORMATION

trip blank provided
χ trap blank not provided
X trip blank not on coc
trup blank intact
TRUP BLANK NOT INTACT RECEIVED WATER TRIP BLANR \square received soll trip blank

MISC. INFORMATION
NUMBER OF ENCORES? 25-GRAM NUMBER OF 5035 FIELD KITS?
NUMBER OF LAB FILTERED METALS ? 5-GRAM \qquad
\qquad

TEMPERATURE INFORMAIION

IR therm m \qquad CORR. FACTOR + 0.4 OBSERVED TEMPS: \qquad $\frac{20}{30}$ CORRECTED TEMPS

SAMPLE INFORMATION

\square Sample labels present on all bottles
\triangle INCORRECT NIMBER OF CONTAINERS USED SAMPLE RECEIVED MPROPERLY PRESERVED INSUFFICIENT VOLUME FOR ANAL YSIS DATES/TMMES ON COC DO NOT MATCH SAMPLE LABEL ID'S ON COC DO NOT MATCH LABEL voc vials have hradspace (Macro bubbles) bottles received but anal ysis not requested No bottles recerved for anal ysis requested UNCLEAR FILTERING OR COMPOSITING INSTRUCTIONS SAMPLE CONTANNER(S) RECEIVED BROKEN \% solids jar not received 5035 FIELD KIT FROZEN WITHIN 48 HOUR'S residual chlorine present

$$
\text { \{APPICABLE TO EPA } 600 \text { SERIES OR NORTH CAROLINA ORGANICS\} }
$$

\qquad

F81610: Chain of Custody
Page 3 of 3

Southeast

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP36829-MB	XX055752.D1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857	

The QC reported here applies to the following samples:
Method: SW846 8082A
F81610-5, F81610-6, F81610-7, F81610-9, F81610-10, F81610-11, F81610-12, F81610-18

CAS No.	Compound	Result	RL	MDL	Units
12674-11-2	Aroclor 1016	ND	17	6.7	ug/kg
11104-28-2	Aroclor 1221	ND	17	8.3	$\mathrm{ug} / \mathrm{kg}$
11141-16-5	Aroclor 1232	ND	17	8.3	ug/kg
53469-21-9	Aroclor 1242	ND	17	6.7	ug/kg
12672-29-6	Aroclor 1248	ND	17	6.7	ug/kg
11097-69-1	Aroclor 1254	ND	17	6.7	ug/kg
11096-82-5	Aroclor 1260	ND	17	6.7	ug/kg

CAS No.	Surrogate Recoveries		Limits
877-09-8	Tetrachloro-m-xylene	84%	$44-126 \%$
$2051-24-3$	Decachlorobiphenyl	89%	$39-157 \%$

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP36836-MB	XX055774.D1	$04 / 20 / 11$	NJ	$04 / 19 / 11$	OP36836	GXX858	

The QC reported here applies to the following samples:
Method: SW846 8082A

F81610-8

CAS No. Compound

12674-11-2 Aroclor 1016
11104-28-2 Aroclor 1221
11141-16-5 Aroclor 1232
53469-21-9 Aroclor 1242
12672-29-6 Aroclor 1248
11097-69-1 Aroclor 1254
11096-82-5 Aroclor 1260

Result

ND	0.50	0.20	$\mathrm{ug} / 1$
ND	0.50	0.25	$\mathrm{ug} / 1$
ND	0.50	0.25	$\mathrm{ug} / 1$
ND	0.50	0.20	$\mathrm{ug} / 1$
ND	0.50	0.20	$\mathrm{ug} / 1$
ND	0.50	0.20	$\mathrm{ug} / 1$
ND	0.50	0.20	$\mathrm{ug} / 1$

Limits

877-09-8 Tetrachloro-m-xylene
87\% 38-127\%
2051-24-3 Decachlorobiphenyl $\quad 84 \% \quad 25-137 \%$

CAS No. Surrogate Recoveries

Blank Spike Summary

Job Number: F81610
Account: ALPHA Alpha Analytics
Project: GRU Phase 2 ESA

Sample OP36829-BS	$\begin{aligned} & \text { File ID DF } \\ & \text { XX055751.D1 } \end{aligned}$	Analyzed 04/19/11	$\begin{aligned} & \mathrm{By} \\ & \mathrm{NJ} \end{aligned}$	Prep Date 04/19/11	Prep Batch OP36829	Analytical Batch GXX857

F81610-5, F81610-6, F81610-7, F81610-9, F81610-10, F81610-11, F81610-12, F81610-18

CAS No. Compound
12674-11-2 Aroclor 1016
11096-82-5 Aroclor 1260

Spike $\mathbf{u g} / \mathrm{kg}$	BSP $\mathbf{u g} / \mathbf{k g}$	BSP $\%$	Limits
133	126	95	$69-117$
133	148	111	$71-121$

BSP

88\% 44-126\%
877-09-8 Tetrachloro-m-xylene
90\%
44-126\%
2051-24-3 Decachlorobiphenyl
39-157\%

Sample	File ID	DF	Analyzed	By	Prep Date OP36836-BS	Prep Batch
				Analytical Batch		
XX055773.D1						

The QC reported here applies to the following samples:
F81610-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP $\%$	Limits
12674-11-2 Aroclor 1016	4	3.6	90	$76-117$	
$11096-82-5$	Aroclor 1260	4	3.9	98	$65-117$
CAS No.	Surrogate Recoveries	BSP	Limits		
877-09-8	Tetrachloro-m-xylene	85%	$38-127 \%$		
2051-24-3	Decachlorobiphenyl	87%	$25-137 \%$		
(a) Insufficient sample for MS/MSD.					

Method: SW846 8082A

Matrix Spike/Matrix Spike Duplicate Summary
Job Number: F81610
Account: ALPHA Alpha Analytics
Project: GRU Phase 2 ESA

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch
OP36829-MS	XX055758.D1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857 Batch
OP36829-MSD	XX055759.D1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857
F81610-10	XX055757.D1	$04 / 19 / 11$	NJ	$04 / 19 / 11$	OP36829	GXX857

The QC reported here applies to the following samples:
Method: SW846 8082A

F81610-5, F81610-6, F81610-7, F81610-9, F81610-10, F81610-11, F81610-12, F81610-18

CAS No. Compound

12674-11-2 Aroclor 1016
11096-82-5 Aroclor 1260

CAS No. Surrogate Recoveries
877-09-8 Tetrachloro-m-xylene
2051-24-3 Decachlorobiphenyl

F81610-10 $\mathbf{u g} / \mathbf{k g}$	\mathbf{Q}	Spike $\mathbf{u g} / \mathbf{k g}$	MS $\mathbf{u g} / \mathbf{k g}$	MS $\%$	MSD $\mathbf{u g} / \mathbf{k g}$	MSD $\%$	RPD	Limits Rec/RPD
19 U	149	125	84	122	83	2	$69-117 / 26$	
19 U	149	149	100	153	104	3	$71-121 / 30$	

MS	MSD	F81610-10	Limits
82%	82%	81%	$44-126 \%$
86%	86%	87%	$39-157 \%$

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

Assoctated semples mp20402: F81510-1, F81610-2, F81610-3, F81610-4, F81610-5, E81610-6, F81610-7, F816109, F81610-10, P81610-11, Fe1610-12, B1610-13, F81610-14, 681610-15
pesults < Mut are shown as zexo for caloulation purposes
(*) Outskde of QC Bimits
(anr) Analyte not requested

```
                                    boghn Number: selbug
                                    Account: ATpmA - Alpha Raalytices
                                    Project: GRU Dhase 又 ESA
```


Antimory

Ansenic	1. 6	1.8 (3)	11.8	$0-20$	1.6	81.0	(a)	90.9	67.3	$80-120$
Barium	102	96.7 (a)	5.3	0-20	102	184	(a)	90.9	90.2	80-120
Beryelkum										
Cadmium	0.060	0.051 (a)	16.2	--20	0.060	2.2	(a)	2.27	94.2	$80-120$
Calciur										
chromium	26.0	25.3 (a)	2.7	0-20	26.0	33.0	(a)	9.09	77.01	80-120

Cobalt
Copper
Iron

| Lead | 6.9 | 6.6 | 4.4 | $0-20$ | 6.9 | 28.8 | 22.7 | 96.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Magnestum

Manganese
Molybdenum
Nickel
potassum

Sekentum	0.0	0.0	(a)	NC	0-20	0.0	84.1		90.9	92.5	$80-120$
Shlver	0.0	0.0	(a)	NC	0-20	0.0	2.2	(a)	2.27	96.8	80-120

sodium

Strontiun
Thad inum
Tin

Ticanium
Vnamaium
zinc
 9, 581610-10, F81610-11, F81610-12, F81610-13, m81610-14, 981610-15

Resulta \quad DD are shown as zero for calenlation purpobes
(*) Oucside of QC Himbs
(M) Matrix Spike Rec. outside of OC Inmts
(anr) Analyte not requested
(a) Eievated reportina Limt (s) due fo metrix interference.
(b) Spike recovery indicetes pospible matrix interferance and/of sample nonhonogenelty.

> Wonn humber: E81610
> Account: Apha - Apha Aralytics
> Broject: GRu phase 2 psk
Qc Batch Te: Mezohoz Mewhous: SWBA6 6010 C

Matrix Type: saly
Prep Dete:
$04 / 19 / 21$

	E81610-1	Splkelot		MSp	DC
Metat	Original MSD	MPEYMCPL	Rec	\%pb	Limit

Aluminam

Aneimory

| Arsenic | 1.6 | 72.5 (a) 77.8 | 91.1 | 11.1 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Bavium | 102 | 179 (a) 77.8 | 98.9 | 2.8 | 20 |

Beryllum

Cadmum	0.060	2.0	(2)	1.95	99.7	9.5	20

Calcium:
Chromium $26.0 \quad 34.5$ (a) $7.78 \quad 109.2 \quad 4.4$
cobalt
copper
Eron

Lead	6.9	26.1	19.5	98.7	9.8	20

Magnesium
Manganese
Molybdenum
Nickel

Potasstum

Selentum	0.0	74.3	(a) 77.8	95.5	12.4	20
Silver	0.0	1.9	(a)	1.95	97.6	14.6
	0.0					

Sodium
strontium
Thallum
Tin

Bitanium
Vanadium
zind
Ascochated samples MP20402: F81610-1, E81610-2, F81610-3, F81610-4, F81610-5, F81610-5, F81610-4, E816109, 581610-10, F81610-11, F81610-12, F81610-13, F81610-14, F81610-15

Results chat are shown as zero for calculation purposes
(*) Outside of QC limite
(H) Matrix Shike Rec. Outside of Q Ihnta
(anr) Analyte not reguested
(a) Elevated reporting limit (s) due to matrix interference.
vogin number: 81610
Account: MPNA - Aypa Analvtics

$$
\text { project: GRU phase } 2 \text { ESA }
$$

```
w Sazch u0; mpzo40
Methods: Swede 60100
Matrex wype: solsDD
    Unite: mg/kg
```

Prep Dace:
$04 / 19 / 13$

Aluminum
Antimony

Axsentc	94.8	100	94.1	$80-120$
Barium	104	100	104.0	$80-120$

Beryl130m
Cacmium $\quad 2.5 \quad 2.5 \quad 100.0 \quad 80-120$

Cabelam
Chmomium $10.8 \quad 10 \quad 108.0 \quad 90 \mathrm{~m} 120$

Cobalt
Copper
Trom
Lead 24.0 25 95.0 80-120

Magnesium
Manganese

Molybaenum
Nickel

Eotassium

Selenium	92.7	100	92.7	$80-120$
$51+y e r$	2.5	2.5	100.0	$80-120$

Soctum

Strontium
Whellum

Tin

Titenimm
Vantanum
annc
Assochated samples Me20402: F82610-1, F81610-2, E81610-3, F81610-4, F81610-5, F81610-6, E81610-7, F816109, 581610-10, $281610-11, ~ E 81610-12$, E81610-13, 581610-14, 581610-15

Results < wh are shom as zero for calouation purposes
(*) outsice of oc Inmits
(anr\} Analyte not recuested

```
QC Batch %O: MP20402
```

Matrix Trpe: SOLDD
Methods: 5\$846 60100

Prep bace: 04/19/11

	581610-1		Q
Netal	Omignal SDI 1:5	SDIE	Limuts

A1.aminum
Antimony

Arsento	32.3	0.00	$100.0(6) 0-10$	
Bariun	2030	2170	6.9	$0-10$

Beryilium
Cedmiun $1.20 \quad 0.00 \quad 100.0(a) 0-10$

Cabebum

Chromium	517	536	3.6	$0-10$

Cobalt
copper
ron
Lead 137160 16.8*(b) 0-10
Magnesimm
Manganese
Molybderum
Nickel

Potassium

Selenim	0.00	0.00	NC	$0-10$
Siver	0.00	0.00	NC	$0-10$

Sodium
strontwum
Thatymum
Tin
Wtantura

Vanadurm
2 inc
Nssochated samples Mp20402: F81610-1, F81610-2, F61610-3, m81610-4, 581610-5, F81610-6, F81610-7, 5e1610w 9, 581610-10, 581610-11, $881610-12, ~ 581610-13,581610-14,581610-15$

Resints s TD, are shown as zero For calcuation purposes
(*) Outejue of © 1mits
(anr) Analyte mot wequestea
(a) Percent difference acceptable due to low inithal sample concentration (e 50 times IDt
(o) Sental dibuthon inchoutes posshble matrix interfenence.

> Logit Number: 681610
> Account: ALPHA - Klphanahytios
> Project: GRU Phase 2 ESA

Qe Eatch YD: Me20402
Methods: Swg 46 boloc
Matris Mype: SoLTr Writs: ug/a

Aluminum
Antimony

Arsenic	9.8	10	32.3	31.654	130.6	0.2	5	100	98.9	$80-120$
Bawemm	9.8	10	2033	1992.34	2269	\%.2	12.5	250	410.7	80-120
Beryllium										
Cadmium	9.8	10	1.2	1.175	52.8	0.2	2.5	50	103.2	$80-120$
Cabchum										
Chromiun	9.8	10	516.9	506.562	560.9	0.2	2.5	50	108.7	$80-120$

Cobalt
Copper:
Iron

Magnesium
Manganese
Molybdenum
Wickel
Potassium

| Seienium | 9.8 | 10 | 0 | 0 | 109.8 | 0.2 | 5 | 100 | 109.8 | $80-120$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Siver | 9.8 | 10 | 0 | 0 | 49.6 | 0.2 | 2.5 | 50 | 99.2 | $80-120$ |

Sodium
strontium

Thativum
Tin

Titanam
Vanamium
zinc
 9, 581610-10, F81610-11, F82 610-12, F81610-13, F81610-14, 581610-15

Resulta < TDL are shown as zero for caloulation purposes
(*) Outsice of oc Limites
(**) Cotr, sample result = Rat * (sample volume / final volume)
(anr) knalyte not requested

Kesults \& TDL are shom as zero for caloulation purposes
(anr) Analyte not requested

Mogin Number: E81.610
Bocount: ArPbA - Anthe Anarytioc profece: GRU phase 2 ESA

De Bateh ID: MP20400	Methocs: Sugth 7473s
matrix mype: suty	Units: mg/kg
Prey Date:	

Metal	$\begin{aligned} & \text { E81550-1 } \\ & \text { original mso } \end{aligned}$	Spikelot nGRUMS :	\% Rec	$\begin{aligned} & \mathrm{MSD} \\ & \mathrm{RPD} \end{aligned}$	$0 C$
Mercury	0.0210 .36	0.286	118.5	2.8	20

Assochated eamples Mp20410: p81610-1, 581610-2, 581610-3, 581610-4, m81610-5
Results < mi are shown as zevo for caloutation purposes
(*) Outside of CC Inits
(W) Matrix spike Rec. outside of QC Mimits
(anr) Analyte not requested

SPIEE BEAKE KND WAB CONTROL SAMETE SUMMERY

```
                    Login Nomber: E81610
                                    Bccount: AMPHA - NDphe Anamytacs
                                    project: gRU phase 2 EsA
QC betch MD: mpze410 methods: 5wel6 7471m
Matrix Type: SomDD
                                    Un|ts: mglkg
```

Prep Date: 04/20/11

Metam	$B S P$ Result	splkelot HCKYms	s Rec	Qc IImits
Mercury	0.25	0.25	100.0	80-120

Assoctated samples Me20410: E81610-1, E81610-2, F816:0-3, F81610-4, E81610-5
Results < WoL ame shown as zero for calculathon purposes
(*) outside of de limits
(anx) Analyte not requested

serial dmution resumis sumatry

Login Number: E81610
Account: AMPHA - Npha Analythes Project: GRU Phase 2 EsA
ge batch LD: Ne20410
Watedx Tyye: Sotro
Methocis: SW846 44718

Prep Date: \quad 专/26/11.

Mexcury $0.246 \quad 0.00 \quad 100.0(3) 0-10$

Resulte < Tph are shown as zero for calculathon purposes
(*) outsicie of की $11 \mathrm{~m}+\mathrm{s}$
(ant Anabyte not cequested
(a) Peucent diference acceptable due to low initiai sample concentration (a 50 times phi).

```
                    BlAN* RESUTTS SUMMARY
                                    Part 2 - Method Blanks
Login Number: E81610
Accoum: Mipha - Alpha Mnalytica Project: GRU Phase 2 ESA
```

Methods: SM846 74TB units: ma/ka

Cc gatch TD: MP2041
Matrix Type: BOLT

Prep Date: $0 / 20 / 11$

Associated samples mp20411: E81610-6, F81610-7, E81610-9, F81510-10, Fe1610-11, F81610-12, F81610-13, 581610-14, $581610-15, ~ 581610-16,581610-18$

Pesults 4 WD are ghown as zero for calculation purposes
(*) Outside of QC Inmes
(arr) Analyte mot requested

> Loghn Mumer: E81610
> Account: Ahpun - Nipha Analytios Project: GRU Phase 2 ES

 581610-14, 581610-15, F81610-16, Fe1610-18

Resulte < Mo are shown as zero for calculation purposes
(*) Outside of gC Mintus
(M) Matrix Soike Rec. OUtside of $0 C$ limits
(any) Analyte not reguested
(a) Rpp acceptable due to low duplicate and sampie concentrathona.

MATRX SPIRE AND DUPBCREE RESUMTE SUMMAR

 8．0．6Lu－1，58．610－15，F810．0－10，58．010－18

Resuits＜TDL are chown as zero for calculethon purposes
（W）Matrix Spike kec．outside of QC iimits
（anc）hratyte not requested

```
Login mumber: 581610 Account: mbrA - Apha Analytica Project: cru Chase 2 ESA
Methods: Swatb 7471
Units: ma/ku
```

Qc katch In: Me20411
Matrix Type: BOLTD
Exep Date: 04/20/11

Mercury $0.24 \quad 0.25 \quad 96.0 \quad 80-120$

Associated samples ME2041, E81610-6, F81610-7, F81610-9, 681510-10, 681610-11, 581610-12, $481610-13$, E81610-14, E81610-15, E81610-16, 581610-18

Results < WL are shown as eero for caloulatlon purposes
(*) Outside of C (1inites
(ary) Anelyte not requested

SERIAL DTUMTON RESULYS GMMRY

Login Number: E81610
Account; AlpuA - Apha gnelytics
project: GRU Phase 2 ESA

Q Batch प0: Meroanl	Methods: SWench 741 B
Matrix Type: Sourb	Units: va/i

Erep Date: ba/20/is

	583610-6		90
Metal	Origina Sot $1: 5$	BLE	Mimits

Mermery $0.913 \quad 0.00 \quad 100.0(2) 0-10$
 T816.0-14, 581510-15, 581610-16, Fe1610-18

Results < Iot are shown as zero for calonlation purposes
(*) Outalde of QC limits
(ans) Amalyte not requested
(a) percent difserence acceptable due to low initial ample concentration (a 50 timea tom,

> BLAR RESUTSS SUMMARY
> Part 2 - Methoc Bianks
> wogin numbes: 881610
> Account: AhPH - Apha Rnalythos
> Project: GRU Phase 2 EgA

QC Batch ID : R220412	Wethods: SWe46 6010c
Matrix mype: moveous	Units: ught

Prep Pete: 0 Q/20/11

Meta	R $\mathrm{R}^{\text {P }}$	Ind	MUE.	$\begin{aligned} & \text { MB } \\ & \text { Maw } \end{aligned}$	Snnal
Aluminum	20%	20	25		
Antimony	6.0	1	2		
Arsenic	10	3	2	-3.1	<10
Barium	200	1	5	-0.10	<200
gerymilum	4.9	. 1	1		
Cacmium	5.0	. 1	1	0.0	<5.0
Calchum	1000	50	100		
Chrombur	10	I	1	0.0	<10
cobalt	50	1	1		
copper	25	1	2		
Iron	300	34	35		
-ead	5.0	1	1	-1.3	<5.0
Magnestum	5000	50	1.00		
Manganese	15	1	1		
Molybaenum	50	1	2		
nuctel	40	1	2		
Potassium	10000	50	500		
Selenium	10	2	2	-3.6	<10
Sinver	10	1.	1	-0.40	<10
Socium	10900	750	1900		
strontium	10	1	1		
Thallum	10	1	1.9		
Tin	50	1.	1		
Titantum	10	1.1	2		
Vanadium	50	1	1		
zinc	20	1.	5		

*ssociated amoles Mp20412: 781610-8, wg1510-17
Results < Lut are shomn as zero for caloulation purposes
(*) Outside of QC Limits
(anc) Analyte not requested

MARRTX SPTKE AND DUPLYCARE RESUETS SUMMRPY

> rogin Wumber: F81610
> sccount: AtpHa - Alphe Analytics Project: GRU Phase 2 ESA

Arsenie	0.0	1790	2000	89.5	0.6	20
Barium	36.9	1970	2000	96.7	0.5	20

seryly Sum

Cadmium	0.0	45.8	50	91.6	0.0	20
Calcium	anr					
Chrontum	1.1	184	200	91.5	0.5	20

cobait
Copper
Iron Enc

Leac	0.0	433	500	86.6	0.2	20

Magnestum anz
Manganese and
mo ybcemm
Nickei
potassium

Selenium	0.0	1790	2000	89.5	0.0	20
SLiver	0.0	45.0	50	90.0	1.6	20

Sodium anr
stronthm
Thallium
Min

Thtanium
vanadium
zinc
Assoctated samoles Mph0412: p81510-8, Eb16.0-17
Results < inh are shown as zero for calouahion purposes
(*) Outside of Q IImits
(N) Matrix Splke Ree. Outside of oc Inmits
(anr) Amalyte not requested

Logir Mumber: 882610
Accontt: AnkHR - Apha dnalytics project: Gry phase 2 ESA

```
OC Eatch TD: M220412
Matmix Type: Agusous
Merhocs: Sw%46 6010c
    Units: ug/1
```


Abumbem anx
Antimoty

Axseriso	0.00	0.00	WC	$0-10$
Barium	36.9	40.1	8.7	-10

Beryidium

| Cacmium | 0.00 | 0.00 | NC |
| :--- | :--- | :--- | :--- | :--- |

Calcium any
Chromium $1.10 \quad 0.00 \quad 100.0$ (a) 0-10
cobatt
Copper
Eron anx
Lead 0.00 NC 0.00 -10
Magnesium Ens
Manganese anm
Mo ypodenum
Wickel
potassium

serentum	0.00	0.00	NC	$0-10$
shiver	0.00	0.00	NC	$0-10$

Sodium any
Strontium
Thellium
min
attaniom
Vanadium
zinc
Assoctated samples mazoatz: Fet610-8, E81610-17
Results < IDE are shown as zero for caloutation purposes
(*) Outside of Qc limits
(anr) Analyte not requested

```


\section*{post dicestare sprae sumyany}

> hogin Number: perbio
> hocount: ALpHA - Apha Analythos
> project: GRU phase 2 EBA

QC Batch TD: MP2Qa12
Matwix Rype: Roveous
Methods: SW846 60100
Units: uglt


Antimory
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Axsentc & 9.8 & 10 & \(\bigcirc\) & 0 & 99.3 & 0.2 & 5 & 100 & 93.3 & 80-120 \\
\hline Bars.m & 9.8 & 10 & 36.9 & 36.152 & 294.2 & 0.2 & 12.5 & 250 & 103.2 & \(80-120\) \\
\hline \multicolumn{11}{|l|}{Berythium} \\
\hline Cacmurut & 9.8 & 10 & 0 & 0 & 51 & 0.2 & 2.5 & 50 & 102.0 & 80-120 \\
\hline \multicolumn{11}{|l|}{Calcium} \\
\hline Chronium & 9.8 & 10 & 1.1 & 1.078 & 50.6 & 0.2 & 2.5 & 50 & 99.0 & 80-120 \\
\hline \multicolumn{11}{|l|}{cobalt} \\
\hline \multicolumn{11}{|l|}{coper} \\
\hline \multicolumn{11}{|l|}{Iron} \\
\hline Lead & 9.8 & 10 & 0 & 0 & 45.5 & 0.2 & 2.5 & 50 & 92.0 & 80-120 \\
\hline \multicolumn{11}{|l|}{Magrestum} \\
\hline \multicolumn{11}{|l|}{Manganese} \\
\hline \multicolumn{11}{|l|}{Molybaerum} \\
\hline \multicolumn{11}{|l|}{Whokel} \\
\hline \multicolumn{11}{|l|}{Potassium} \\
\hline Selentum & 9.8 & 10 & 0 & 0 & 96.3 & 0.2 & 5 & 100 & 96.3 & 80-120 \\
\hline swaer & 9.8 & 10 & 0 & 0 & 50.2 & 0.2 & 2.5 & 50 & 100.4 & \(80-120\) \\
\hline
\end{tabular}
sodium
strontium

Thathicm
ma

Tbanium
Vanadium
zinc
Assochated samples me20412 : wat610-8, be1610-17
Results < Dhe are shown as zero for caloulathon purposes
(*) Outside of Qe limites
(**) Cox. sample result Baw * (sample volumef frad volumet
(anc) Analyte not requested

(*) Outside of QC limets
(anc) mande mot recuest
(anr) analyte not requested


\footnotetext{
a) Splse recovery indicates possibie matrux interferemce andfor ample nomomogeneity.
}


A1umam
Antimony
\begin{tabular}{lllllll} 
Arsenc & 0.52 & 88.7 & 110 & 80.2 & 27.1 (a) 20 \\
Bansum & 25.5 & 128 & 110 & 93.2 & 22.6 (a) 20
\end{tabular}

Berylizum
Cacmium \(0.0 \quad 2.3 \quad 2.75 \quad 83.6 \quad 24.4\) (e) 20

Cabcum
\begin{tabular}{lllllll} 
Chromium & 5.0 & 15.2 & 11 & 92.7 & 17.9 & 20
\end{tabular}

Cobalt

Copper
Iron
\begin{tabular}{llllllll} 
Head & 4.8 & 31.5 & 27.5 & 97.1 & 20.3 & (a) 20
\end{tabular}

Magnestum

Manganese
mo yodenum
Nacket

Potassium
\begin{tabular}{llllll} 
Selenium & 0.38 & 87.5 & 110 & \(79.2 N(b) 27.0\) (a) 20 \\
Siver & 0.0 & 2.4 & 2.75 & \(76.4 \mathrm{~N}^{2}(\mathrm{~b}) 21.1\) (a) 20
\end{tabular}

Sodium

Btrontium
had 1 wum
Tin

Mtentym

Vanadium
zinc
Assoctated samples MP20416: Falb10-16, p81610-18

Results < TDL are Bhown as zero for culcularion purposes
(*) Outs ide of QC IImits
(M) Matrix Spike Rec. Outside of QC Imits
(anc) Andyye not requested
(a) High RPD due to posslble sample nonhomoceneity
(b) Spike recovery indicates possible matriy interference and/or abmpe nonhomogeneity.

Wegln Number: F816.0
Accoust: Arpha - Abpha Analytics
Project: GRU Phase 2 ESA
 Matrix Type: Somp

Q4/21/11
\begin{tabular}{|c|c|c|c|}
\hline & SSP & Splrekot & QC \\
\hline Metal & Result & MPEMMCPL gec & Limits \\
\hline
\end{tabular}

Antrimony
\begin{tabular}{lllll} 
Argenic & 98.2 & 100 & 98.2 & \(80-120\) \\
Barium & 107 & 100 & 107.0 & \(80-120\) \\
Berylinum & & & & \\
Cachmum & 2.6 & 2.5 & 104.0 & \(80-120\)
\end{tabular}

Calcium
chrombur \(10.7 \quad 107.0 \quad 80-120\)
cobalt
copper
wron
Leac \begin{tabular}{llll}
24.9 & 25 & 99.6 & \(80-120\)
\end{tabular}

Magnesium
Mancanese
Molybdenum
Wekel

Potassium
\begin{tabular}{lllll} 
Selenium & 97.2 & 100 & 97.2 & \(80-120\) \\
Shiver & 2.4 & 2.5 & 96.0 & \(80-120\)
\end{tabular}

Sodium
strontinm
Thambum
Tin
witanium
vanedium
zinc
Associated samples MPQ0416: F81610-16, E81610-18
2esblts r Tot are shom as zero for calculation purposes
(*) Outside of oc iimltus
(anc) Ankuyte not requested


A lumbum
Antimony
\begin{tabular}{llll} 
Arsenic & 22.6 & 16.0 & 37.9 (a) \(0-10\) \\
Barium & 574 & 662 & \(15.3 *(b) 0-10\)
\end{tabular}

Beryllimm
Cacmunum
0.00
\(0.00 \quad \mathrm{No}\)
\(0-10\)

Cabcum

Chromium
113
130
14.8*(b) 0-10

Cobalt

Copper
ron


Magnes ium
Manganese

Molyocenum
Nickel
potassium
\begin{tabular}{llllll} 
Selentum & 8.50 & 11.9 & 40.0 & (a) \(0-10\) \\
Silver & 0.00 & 0.00 & NE & \(0-10\)
\end{tabular}

Sodicm

Strontium
Thaty ium
arn

Titandum

Vanadiun
zine
Associatec samples Mp20416: F81610-16, F81610-18

Resuhts \(<\) Thm are Shomn as zero for calculation purposes
(*) Outstae of gc limits
(anm Aralyte not requested
(a) percent diference acceptable due to low initial dample concentration (o so times tow
(b) Serial dinthon indicates possible metwix finterfecence.



Resmits < TDL zre shom as zero for caloulation purposes
(*) Outside of aC Limits
(ans) snalyte not requested

Togin Vumber： 81610
kocount：Abpha－Aphz Anatytice Project：GRU Phase 2 EQ
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
QC Batch LD：MP20429 \\
Matrix rype：AQuaOUS
\end{tabular}} & \multicolumn{8}{|c|}{\[
\begin{aligned}
& \text { Methods: SNe46 7atok } \\
& \text { Mnits: wath }
\end{aligned}
\]} & \\
\hline prep Dat & & \multicolumn{2}{|l|}{04／22， 1} & \multicolumn{6}{|c|}{\(04 / 22 / 11\)} & \\
\hline Seral & \[
\begin{aligned}
& \text { ma456-2 } \\
& \text { original Dup }
\end{aligned}
\] & 2e\％ & \(\infty\) Limits & \[
\begin{aligned}
& \mathrm{ag} \\
& \mathrm{ax}
\end{aligned}
\] & & & & & \begin{tabular}{l}
QC \\
Limits
\end{tabular} & ए受 \\
\hline Mercumy & 0.00 .0 & NE & 0－20 & 0.0 & 3.1 & 3 & & 3.3 & \(80-120\) & \\
\hline
\end{tabular}

Fesults \(<\) Thr are Shown as zero for calcularion purposes
（＊）Outside of（e limits
（i）Matrix Splke Rec．Oucside of QC Inmits
（anr）Analyte not requested
Lognn Number: F81610
Account: AMpHA - Ahphe Analytucs
Prolect: GRU Phase 2 ESK
```

00 3atch In: Mb2042% Methods: Swe4b 7470%
Matwix Type: AOUEOUS
Unyts: ug/l
Prep Date: $04 / 22 / 11$

	281456-2\%	Spikelot			MSD	C\%
Metal	Orighnal MSD	HCEMWS1	\%	Rec	RPD	Sinje

Mssociated samples Mp20429; 781610-8, 581610-17
Results 4 Mr are shown as zero for calculation purposes
(*) Outside of एC imics
(H) Matrix Spike Rec. Outstde of gC Iimita
(anc) Analute not reguested

```

> Locin Number: E81.610
> Accont: ALphĀ - Alehe Analyeios Protect: GRU phase 2 asA

```

Narmis Type: Roumous
OA/22/1

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline Metal & \begin{tabular}{l}
BS\% \\
Result
\end{tabular} & Splexerot MGELWEK & 8 & & \begin{tabular}{l}
\[
00
\] \\
Lintts
\end{tabular} \\
\hline
\end{tabular}

Results < DDE aye shown as zero fon cabulation puxposes
*' Ourside of ge limits
(anr) Ananvte not requested

\section*{GERTRL DHLUMTON RESULTS GUMERY}

Login Namber: ER1610
Account: Atphh - Apha Analytice Project: Gev phase 2 ESk
```

Q Batch ID: Mp20429
Macswix Type: ROUEOUS
Nethods: 5%846 7470%
ethods: sm8

```

Prep Date: 04/22/11
\begin{tabular}{|c|c|c|c|}
\hline & 581456-2E & & ¢0 \\
\hline Neral & Orkginal Sot \({ }^{\text {a }}\) : & SDTF & Limits \\
\hline
\end{tabular}

Asscciated samples Me20429: Fenguo-8, 581610-17
pesults < WDE are shom as zero for canculation parposes
(*) Outside of ¢c 1tmuts
(anr) Mnalyte not requested

\title{
APPENDIX F BENZO(A)PYRENE CONVERSION TABLE
}

\title{
Benzo(a)pyrene Conversion Table
}

For Direct Exposure Soil Cleanup Target Levels
Site Name
Location:
Facility ID No.:

GRU Facilities Properties
Parcel 1

SB-3
4/13/2011

8

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a " \(J\) ", " \(T\) " or " " " qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the " \(J\) " qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the " \(U\) " qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the "T" qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "l" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the " \(M\) " qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.001 & 1.0 & 0.001 \\
\hline Benzo(a)anthracene & 0.010 & 0.1 & 0.001 \\
\hline Benzo(b)fluoranthene & 0.001 & 0.1 & 0.000 \\
\hline Benzo(k)fluoranthene & 0.010 & 0.01 & 0.000 \\
\hline Chrysene & 0.001 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.009 & 1.0 & 0.009 \\
\hline Indeno(1,2,3-cd)pyrene & 0.002 & 0.1 & 0.000 \\
\hline
\end{tabular}

DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ; \mathrm{DE}\) Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)
Total Benzo(a)pyrene Equivalents \(=\square 0.0\)
The concentration shown does not exceed the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{3}{c|}{ Summary Criteria for Table Entries } \\
\hline Detection & Concentration Reported & Data Qualifier & \\
\hline Various & Quantified with certainty & None & Enter \\
Various & Estimated & \(J\) & reported value \\
ND at MDL & MDL & reported (estimated) value \\
\(<\) MDL & Estimated & T & \(1 / 2\) reported value \\
\(\geq\) MDL but <PQL & Estimated & reported (estimated) value \\
\(\geq\) MDL but <PQL & Not estimated & & reported (estimated) value \\
\hline
\end{tabular}

\section*{Benzo(a)pyrene Conversion Table}

For Direct Exposure Soil Cleanup Target Levels
Site Name:
GRU Facilities Properties
Location:
Parcel 1
Facility ID No.:

Soil Sample No.
Sample Date
Location:
Depth (ft): \(\qquad\)

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a " \(J\) ", " \(T\) " or " \(I\) " qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the " \(J\) " qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the "U" qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the "T" qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the " 1 " qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the " M " qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.020 & 1.0 & 0.020 \\
\hline Benzo(a)anthracene & 0.010 & 0.1 & 0.001 \\
\hline Benzo(b)fluoranthene & 0.010 & 0.1 & 0.001 \\
\hline Benzo(k)fluoranthene & 0.080 & 0.01 & 0.001 \\
\hline Chrysene & 0.110 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.020 & 1.0 & 0.020 \\
\hline Indeno(1,2,3-cd)pyrene & 0.002 & 0.1 & 0.000 \\
\hline
\end{tabular}

DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ;\) DE Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)
Total Benzo(a)pyrene Equivalents \(=\square \mathbf{0 . 0}\)
The concentration shown does not exceed the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Summary Criteria for Table Entries} \\
\hline Detection & Concentration Reported & Data Qualifier & Enter \\
\hline Various & Quantified with certainty & None & reported value \\
\hline Various & Estimated & J & reported (estimated) value \\
\hline ND at MDL & MDL & U & 1/2 reported value \\
\hline < MDL & Estimated & T & reported (estimated) value \\
\hline \(\geq\) MDL but < PQL & Estimated & I & reported (estimated) value \\
\hline \(\geq \mathrm{MDL}\) but < PQL & Not estimated & M & \(1 / 2\) reported value \\
\hline
\end{tabular}

\section*{Benzo(a)pyrene Conversion Table}

For Direct Exposure Soil Cleanup Target Levels
\begin{tabular}{ll} 
Site Name: \\
Location: \\
Facility ID No.: & GRU Facilities Properties \\
\cline { 2 - 2 } \\
\begin{tabular}{ll} 
Soil Sample No. \\
Sample Date \\
Location: \\
Depth (ft):
\end{tabular} & SB-6 \\
\hline
\end{tabular}

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a "J", "T" or "l" qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the " U " qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the " T " qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "I" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the " M " qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.002 & 1.0 & 0.002 \\
\hline Benzo(a)anthracene & 0.110 & 0.1 & 0.011 \\
\hline Benzo(b)fluoranthene & 0.030 & 0.1 & 0.003 \\
\hline Benzo(k)fluoranthene & 0.002 & 0.01 & 0.000 \\
\hline Chrysene & 0.020 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.003 & 1.0 & 0.003 \\
\hline Indeno(1,2,3-cd)pyrene & 0.003 & 0.1 & 0.000 \\
\hline
\end{tabular}

DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ;\) DE Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)
Total Benzo(a)pyrene Equivalents \(=\square 0.0\)
The concentration shown does not exceed the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{7}{|c|}{ Summary Criteria for Table Entries } \\
\hline Detection & Concentration Reported & Data Qualifier & Enter \\
\hline Various & Quantified with certainty & None & reported value \\
Various & Estimated & \(J\) & reported (estimated) value \\
ND at MDL & MDL & \(U\) & \(1 / 2\) reported value \\
\(<M D L\) & Estimated & Teported (estimated) value \\
\(\geq M D L\) but \(<P Q L\) & Estimated & & reported (estimated) value \\
\(\geq M D L\) but <PQL & Not estimated & & \(1 / 2\) reported value \\
\hline
\end{tabular}

\title{
Benzo(a)pyrene Conversion Table
}

For Direct Exposure Soil Cleanup Target Levels
Site Name:
Location:
Facility ID No.:

GRU Facilities Properties
Parcel 1
\(\qquad\)
SB-7
4/13/2011

8

Soil Sample No.
Sample Date
Location:
Depth (ft):
\begin{tabular}{l} 
Benzo(a)pyrene \\
For Direct Exposure Soil \\
GRU Facilities Properties \\
\hline Parcel 1 \\
\hline \\
\hline SB-7 \\
\hline \(4 / 13 / 2011\) \\
\hline 8 \\
\hline
\end{tabular}

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a " \(J\) ", " \(T\) " or " \(l\) " qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the " \(U\) " qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the " \(T\) " qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "l" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the " \(M\) " qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.001 & 1.0 & 0.001 \\
\hline Benzo(a)anthracene & 0.001 & 0.1 & 0.000 \\
\hline Benzo(b)fluoranthene & 0.060 & 0.1 & 0.006 \\
\hline Benzo(k)fluoranthene & 0.001 & 0.01 & 0.000 \\
\hline Chrysene & 0.001 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.002 & 1.0 & 0.002 \\
\hline Indeno(1,2,3-cd)pyrene & 0.002 & 0.1 & 0.000 \\
\hline
\end{tabular}

DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ; \mathrm{DE}\) Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)
Total Benzo(a)pyrene Equivalents \(=\square 0.0\)
The concentration shown does not exceed the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{3}{c|}{ Summary Criteria for Table Entries } \\
\hline Detection & Concentration Reported & Data Qualifier & \\
\hline Various & Quantified with certainty & None & Enter \\
Various & Estimated & J & reported value \\
ND at MDL & MDL & U & reported (estimated) value \\
\(<\) MDL & Estimated & T & \(1 / 2\) reported value \\
\(\geq\) MDL but < PQL & Estimated & reported (estimated) value \\
\(\geq\) MDL but <PQL & Not estimated & \(M\) & reported (estimated) value \\
\hline
\end{tabular}

\section*{Benzo(a)pyrene Conversion Table}

\section*{For Direct Exposure Soil Cleanup Target Levels}

Site Name:
GRU Facilities Properties
Location:
Facility ID No.: \(\qquad\)

Soil Sample No.
Sample Date
Location:
Depth (ft):
\begin{tabular}{l} 
Benzo(a)pyrene \\
For Direct Exposure So \\
GRU Facilities Properties \\
\hline Parcel 1 \\
\hline \\
\hline SB-8 \\
\hline \(4 / 13 / 2011\) \\
\hline 8 \\
\hline
\end{tabular}

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a " \(J\) ", " \(T\) " or " " qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the " \(U\) " qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the " \(T\) " qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "l" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the "M" qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.001 & 1.0 & 0.001 \\
\hline Benzo(a)anthracene & 0.400 & 0.1 & 0.040 \\
\hline Benzo(b)fluoranthene & 0.001 & 0.1 & 0.000 \\
\hline Benzo(k)fluoranthene & 0.001 & 0.01 & 0.000 \\
\hline Chrysene & 0.001 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.002 & 1.0 & 0.002 \\
\hline Indeno(1,2,3-cd)pyrene & 0.002 & 0.1 & 0.000 \\
\hline
\end{tabular}

DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ;\) DE Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)
Total Benzo(a)pyrene Equivalents \(=\square 0.0\)
The concentration shown does not exceed the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{5}{|c|}{ Summary Criteria for Table Entries } \\
\hline Detection & Concentration Reported & Data Qualifier & \\
\hline Various & Quantified with certainty & None & Enter \\
Various & Estimated & J & reported value \\
ND at MDL & MDL & U & reported (estimated) value \\
\(<\) MDL & Estimated & T & \(1 / 2\) reported value \\
\(\geq\) MDL but < PQL & Estimated & 1 & reported (estimated) value \\
\(\geq\) MDL but <PQL & Not estimated & M & reported (estimated) value \\
\hline
\end{tabular}

\section*{Benzo(a)pyrene Conversion Table}

\section*{For Direct Exposure Soil Cleanup Target Levels}

Site Name:
Location:
Facility ID No.:

GRU Facilities Properties
Parcel 1

SB-16
4/13/2011

6

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a " \(J\) ", "T" or " 1 " qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the " \(U\) " qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the " \(T\) " qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "।" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the "M" qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.001 & 1.0 & 0.001 \\
\hline Benzo(a)anthracene & 0.060 & 0.1 & 0.006 \\
\hline Benzo(b)fluoranthene & 0.001 & 0.1 & 0.000 \\
\hline Benzo(k)fluoranthene & 0.001 & 0.01 & 0.000 \\
\hline Chrysene & 0.001 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.002 & 1.0 & 0.002 \\
\hline Indeno(1,2,3-cd)pyrene & 0.002 & 0.1 & 0.000 \\
\hline
\end{tabular}

DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ; \mathrm{DE}\) Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)
Total Benzo(a)pyrene Equivalents \(=\square 0.0\)
The concentration shown does not exceed the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{3}{c|}{ Summary Criteria for Table Entries } \\
\hline Detection & Concentration Reported & Data Qualifier & Enter \\
\hline Various & Quantified with certainty & None & reported value \\
Various & Estimated & J & reported (estimated) value \\
ND at MDL & MDL & U & \(1 / 2\) reported value \\
\(<M D L\) & Estimated & T & reported (estimated) value \\
\(\geq M D L\) but \(<\mathrm{PQL}\) & Estimated & reported (estimated) value \\
\(\geq M D L\) but \(<\mathrm{PQL}\) & Not estimated & M & \(1 / 2\) reported value \\
\hline
\end{tabular}

\title{
Benzo(a)pyrene Conversion Table
}

For Direct Exposure Soil Cleanup Target Levels
Site Name:
Location:
Facility ID No.:

Soil Sample No.
Sample Date
Location:
Depth (ft):

GRU Facilities Properties
Parcel 1

SB-17
4/13/2011
0.5

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a " J ", " T " or " l " qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the " \(U\) " qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the " T " qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "l" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the "M" qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.100 & 1.0 & 0.100 \\
\hline Benzo(a)anthracene & 0.020 & 0.1 & 0.002 \\
\hline Benzo(b)fluoranthene & 0.160 & 0.1 & 0.016 \\
\hline Benzo(k)fluoranthene & 0.030 & 0.01 & 0.000 \\
\hline Chrysene & 0.001 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.002 & 1.0 & 0.002 \\
\hline Indeno(1,2,3-cd)pyrene & 0.002 & 0.1 & 0.000 \\
\hline
\end{tabular}
\(D E\) Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ; D E\) Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)
Total Benzo(a)pyrene Equivalents \(=\square 0.1\)
The concentration shown does not exceed the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{3}{c|}{ Summary Criteria for Table Entries } \\
\hline Detection & Concentration Reported & Data Qualifier & Enter \\
\hline Various & Quantified with certainty & None & reported value \\
Various & Estimated & \(J\) & reported (estimated) value \\
ND at MDL & MDL & \(U\) & \(1 / 2\) reported value \\
\(<\) MDL & Estimated & \(T\) & reported (estimated) value \\
\(\geq M D L\) but \(<\) PQL & Estimated & reported (estimated) value \\
\(\geq M D L\) but \(<\) PQL & Not estimated & \(M\) & \(1 / 2\) reported value \\
\hline
\end{tabular}

\title{
Benzo(a)pyrene Conversion Table \\ For Direct Exposure Soil Cleanup Target Levels
}

Site Name:
GRU Facilities Properties
Location:
Facility ID No.: \(\qquad\)

Soil Sample No.
Sample Date
Location:
Depth (ft):

SB-18
4/14/2011
0.5

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a " J ", " \(T\) " or " l " qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the " \(U\) " qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the " \(T\) " qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "l" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the " \(M\) " qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.040 & 1.0 & 0.040 \\
\hline Benzo(a)anthracene & 0.050 & 0.1 & 0.005 \\
\hline Benzo(b)fluoranthene & 0.050 & 0.1 & 0.005 \\
\hline Benzo(k)fluoranthene & 0.040 & 0.01 & 0.000 \\
\hline Chrysene & 0.060 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.030 & 1.0 & 0.030 \\
\hline Indeno(1,2,3-cd)pyrene & 0.040 & 0.1 & 0.004 \\
\hline DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ;\) DE Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\) \\
\multicolumn{4}{|c|}{ Total Benzo(a)pyrene Equivalents \(=\)} \\
\hline
\end{tabular}

The concentration shown does not exceed the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ Summary Criteria for Table Entries } \\
\hline Detection & Concentration Reported & Data Qualifier & \\
\hline Various & Quantified with certainty & None & Enter \\
Various & Estimated & \(J\) & reported value \\
ND at MDL & MDL & \(U\) & reported (estimated) value \\
\(<\) MDL & Estimated & T & \(1 / 2\) reported value \\
\(\geq M D L\) but \(<P Q L\) & Estimated & reported (estimated) value \\
\(\geq\) MDL but <PQL & Not estimated & reported (estimated) value \\
\hline
\end{tabular}

\section*{Benzo(a)pyrene Conversion Table}

\section*{For Direct Exposure Soil Cleanup Target Levels}

Site Name:
Location:
Facility ID No.:
GRU Facilities Properties
Parcel 2
\(\qquad\)
Soil Sample No.
Sample Date
Location:
Depth (ft):
\begin{tabular}{l} 
SB-19 \\
\hline \(4 / 13 / 2011\) \\
\hline 0.5
\end{tabular}

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a " \(J\) ", " \(T\) " or " " " qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the " \(J\) " qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the "U" qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the " \(T\) " qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "I" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the " M " qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.150 & 1.0 & 0.150 \\
\hline Benzo(a)anthracene & 0.140 & 0.1 & 0.014 \\
\hline Benzo(b)fluoranthene & 0.200 & 0.1 & 0.020 \\
\hline Benzo(k)fluoranthene & 0.100 & 0.01 & 0.001 \\
\hline Chrysene & 0.250 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.160 & 1.0 & 0.160 \\
\hline Indeno(1,2,3-cd)pyrene & 0.110 & 0.1 & 0.011 \\
\hline
\end{tabular}

DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ; \mathrm{DE}\) Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)
Total Benzo(a)pyrene Equivalents \(=\square 0.4\)
The concentration shown EXCEEDS the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Summary Criteria for Table Entries} \\
\hline Detection & Concentration Reported & Data Qualifier & Enter \\
\hline Various & Quantified with certainty & None & reported value \\
\hline Various & Estimated & J & reported (estimated) value \\
\hline ND at MDL & MDL & U & 1/2 reported value \\
\hline < MDL & Estimated & T & reported (estimated) value \\
\hline \(\geq\) MDL but < PQL & Estimated & 1 & reported (estimated) value \\
\hline \(\geq\) MDL but < PQL & Not estimated & M & \(1 / 2\) reported value \\
\hline
\end{tabular}

\title{
Benzo(a)pyrene Conversion Table
}

For Direct Exposure Soil Cleanup Target Levels
Site Name:
Location:
Facility ID No.:
GRU Facilities Properties
Parcel 2

SB-21
4/14/2011
Sample Date
Location:
Depth (ft):
\(\qquad\)

Soil Sample No.

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a " \(J\) ", " \(T\) " or " "qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the "J" qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the "U" qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the " T " qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "l" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the " M " qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|c|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.002 & 1.0 & 0.002 \\
\hline Benzo(a)anthracene & 1.500 & 0.1 & 0.150 \\
\hline Benzo(b)fluoranthene & 0.430 & 0.1 & 0.043 \\
\hline Benzo(k)fluoranthene & 0.002 & 0.01 & 0.000 \\
\hline Chrysene & 0.002 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.830 & 1.0 & 0.830 \\
\hline Indeno(1,2,3-cd)pyrene & 0.002 & 0.1 & 0.000 \\
\hline \multicolumn{4}{|l|}{DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ; \mathrm{DE}\) Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)} \\
\hline \multicolumn{3}{|r|}{Total Benzo(a)pyrene Equivalents \(=\)} & 1.0 \\
\hline \multicolumn{4}{|l|}{The concentration shown EXCEEDS the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).} \\
\hline \multicolumn{4}{|l|}{The concentration shown EXCEEDS the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{Summary Criteria for Table Entries} \\
\hline Detection & Concentration Reported & Data Qualifier & Enter \\
\hline Various & Quantified with certainty & None & reported value \\
\hline Various & Estimated & J & reported (estimated) value \\
\hline ND at MDL & MDL & U & 1/2 reported value \\
\hline < MDL & Estimated & T & reported (estimated) value \\
\hline \(\geq\) MDL but < PQL & Estimated & 1 & reported (estimated) value \\
\hline \(\geq \mathrm{MDL}\) but < PQL & Not estimated & M & \(1 / 2\) reported value \\
\hline
\end{tabular}

\title{
Benzo(a)pyrene Conversion Table
}

For Direct Exposure Soil Cleanup Target Levels
Site Name:
Location:
Facility ID No.:
GRU Facilities Properties
Parcel 2

Soil Sample No.
Sample Date
Location:
Depth (ft):
\(\qquad\)

SB-23
4/14/2011

8
INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a "J", "T" or "l" qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the " \(J\) " qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the " \(U\) " qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the "T" qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the "|" qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the "M" qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|c|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.001 & 1.0 & 0.001 \\
\hline Benzo(a)anthracene & 2.800 & 0.1 & 0.280 \\
\hline Benzo(b)fluoranthene & 0.530 & 0.1 & 0.053 \\
\hline Benzo(k)fluoranthene & 0.350 & 0.01 & 0.004 \\
\hline Chrysene & 0.001 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.002 & 1.0 & 0.002 \\
\hline Indeno(1,2,3-cd)pyrene & 0.002 & 0.1 & 0.000 \\
\hline \multicolumn{4}{|l|}{\(\overline{\text { DE Residential }=0.1 \mathrm{mg} / \mathrm{kg} ; \mathrm{DE} \text { Industrial }=0.7 \mathrm{mg} / \mathrm{kg}}\)} \\
\hline \multicolumn{3}{|l|}{Total Benzo(a)pyrene Equivalents \(=\)} & 0.3 \\
\hline \multicolumn{4}{|l|}{The concentration shown EXCEEDS the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).} \\
\hline
\end{tabular}

The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{3}{c|}{ Summary Criteria for Table Entries } \\
\hline Detection & Concentration Reported & Data Qualifier & \\
\hline Various & Quantified with certainty & None & Enter \\
Various & Estimated & J & reported value \\
ND at MDL & MDL & U & reported (estimated) value \\
\(<\) MDL & Estimated & T & \(1 / 2\) reported value \\
\(\geq\) MDL but \(<\) PQL & Estimated & reported (estimated) value \\
\(\geq\) MDL but \(<\) PQL & Not estimated & reported (estimated) value \\
\hline
\end{tabular}

\section*{Benzo(a)pyrene Conversion Table}

For Direct Exposure Soil Cleanup Target Levels
Site Name:
Location:
GRU Facilities Properties
Parcel 2
Facility ID No.:

Soil Sample No.
Sample Date
Location:
Depth (ft):
\(\qquad\)

SB-24
4/14/2011

6

INSTRUCTIONS: Calculate Total Benzo(a)pyrene Equivalents if at least one of the carcinogenic PAHs is detected in the sample at a concentration equal to or higher than the Method Detection Limit (MDL), whether quantified with certainty (the concentration reported has no qualifier) or estimated (the concentration reported has a "J", "T" or "l" qualifier). Enter the contaminant concentrations (in \(\mathrm{mg} / \mathrm{kg}\) ) for all seven carcinogenic PAHs in the yellow boxes using the following criteria (and see table below):
1. If quantified with certainty, or estimated and has the " \(J\) " qualifier, enter the reported value;
2. If not detected at the MDL (the concentration reported is the MDL followed by the " \(U\) " qualifier) enter \(1 / 2\) of the reported value;
3. If detected at a concentration lower than the MDL and the concentration is estimated (has the " T " qualifier) enter the estimated value;
4. If detected at a concentration equal to or higher than the MDL but lower than the Practical Quantitation Limit (PQL) and the concentration is estimated (has the " 1 " qualifier) enter the estimated value;
5. If detected at a concentration equal to or higher than the MDL but lower than the PQL and it is not estimated (the concentration reported is the PQL followed by the " \(M\) " qualifier) enter \(1 / 2\) of the reported value.
\begin{tabular}{|l|c|c|c|}
\hline Contaminant & Concentration (mg/kg) & Toxic Equivalency Factor & Benzo(a)pyrene Equivalents \\
\hline Benzo(a)pyrene & 0.001 & 1.0 & 0.001 \\
\hline Benzo(a)anthracene & 0.210 & 0.1 & 0.021 \\
\hline Benzo(b)fluoranthene & 0.001 & 0.1 & 0.000 \\
\hline Benzo(k)fluoranthene & 0.001 & 0.01 & 0.000 \\
\hline Chrysene & 0.001 & 0.001 & 0.000 \\
\hline Dibenz(a,h)anthracene & 0.002 & 1.0 & 0.002 \\
\hline Indeno(1,2,3-cd)pyrene & 0.002 & 0.1 & 0.000 \\
\hline
\end{tabular}

DE Residential \(=0.1 \mathrm{mg} / \mathrm{kg} ; \mathrm{DE}\) Industrial \(=0.7 \mathrm{mg} / \mathrm{kg}\)
Total Benzo(a)pyrene Equivalents \(=\square 0.0\)
The concentration shown does not exceed the Residential Direct Exposure SCTL of \(0.1 \mathrm{mg} / \mathrm{kg}\).
The concentration shown does not exceed the Industrial Direct Exposure SCTL of \(0.7 \mathrm{mg} / \mathrm{kg}\).
\begin{tabular}{|l|l|l|l|}
\hline & \multicolumn{3}{c|}{ Summary Criteria for Table Entries } \\
\hline Detection & Concentration Reported & Data Qualifier & \\
\hline Various & Quantified with certainty & None & Enter \\
Various & Estimated & \(J\) & reported value \\
ND at MDL & MDL & U & \(1 / 2\) reported value \\
\(<\) MDL value \\
\(\geq\) MDL but < PQL & Estimated & T & reported (estimated) value \\
\(\geq\) MDL but <PQL & Estimated & reported (estimated) value \\
\hline
\end{tabular}```


[^0]:    Disclaimer - Copyright and Trademark notice
    This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

    Copyright 2011 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

    EDR and its logos (including Sanbom and Sanbom Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

[^1]:    This Certified Sanborn Map combines the following sheets.

[^2]:    

[^3]:    EMSL maintains liabity limited to cost of analysis. This report relates only to the samples reported and may not te reproduced. except in full. without written approval by EMSL. EMS bears no responsibility for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsionity of the client This report must not be used by the client to clam product certification, approval, or endorsement by NVLAP. NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends graumetric reduction poor to analysis. Samples received in good condition unless otherwise noted

[^4]:    EMSL mantains liability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without written approval by EMSL, EMSL bears no responsibity tor sample collection activites or anafytical method limitations. interpretation and use of test restits are the responsibtity of the chent. This report must not be used by the client to clam prodtct certfication. approval, of endorsement by NVLAP. NIST or any agency of the federal govemment. Non-fnabie organically bound matenais present a probiem matnx and therefore EMSL recommends graumetnc reduction pror to analysis. Samples teceived in good condition untess otherwise noted.
    Samples analyzed by EMSL Analyicai inc. Oriando. FL NVLAP Lab Code 101151-0

[^5]:    EMSL maintains habithy limited to cost of anaiysis. This report relates oniy to the samples reported and may not be reproduced. except in full. without whtien approval by EMSt. EMS used by the client to clam sample collection activities or analyical method imitations. Interpretation and use of test results are the responsibity of the client This report must not be used by the client to ctarm product certication, approval. or endorsement by NVL. AP. NIST or any agency of the federal government. Non-fnable organically bound matenats present a proolem matnx and therefore EMSL recommends gravmetnc reduction pnor to analysis. Samples recerved in good condition uniess otherwise noted.
    Samples analyzed by EMS: Analytical. Inc. Ortando. FL NVLAP tab Code 101451.0

[^6]:    EMSL maintains liablity limited to cost of analysis. This repont relates only to the samples reported and may not be reproduced. except in full, without wniten approval by EMSL. EMS bears no responsibity for sample co

[^7]:    EMS Thaintains liabilty frmited to cost of analysts. This repon relates only to the samples reponted and may not be reproduced. except in full, without wniten approval by EMSL. EMS bears no responsibity for sample coffection actubties or anatyical method limitations. Interpretation and use of test resuts are the responsibulity of the client. This report must nct be used by he client to clamm product cenfication. approval. or endorsement by NVLAP. NIST of any agency of the federat government Non-frable orgamically bound materiais present a

[^8]:    EMSL maintains hathty limited to cost of analysis. This report relates only to the samples reportec and may not oe reproduced, except in full. without wnten approval by EMSL. EMSL bears no responsiblity for sample collection activiles or analytical method firmitations. Interpretation and use of test results are the responsibulity of the chent This report must not be usec oy the clent to clam product certification. approval. or endorsement by NVLAP. NIST or any agency of the federat govemment Non-fnable organcally bound matenals present a

[^9]:    EMSL matntans liabilty limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without wnten approval by EMSL. EMS bears no responsibtlity for sample collection activtes or analytical methoo fimtations. Interpretation and use of test results are the responsibinty of the client This report must not be used by the ctient to clam product cemfication. approval, or endorsement by NVLAF. NIST or any agency of the federai government Non-fnable organically bound matenats present a problem matix and therefore EMSL recommends graumetric reduction pror to analysis Samples received in good condition untess otherwise noted
    Samples anaiyzed by EMSL Analyical. Inc. Onando. FL NVLAF Lab Code $101151-0$

[^10]:    EMSL mathtans lability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in fut. without written approval ty EMSL EMSL bears no responsibity for sample collection activities or analytical method limitations. Interpretation and use of test results are the responsibility of the chant. This report must mot be used by the client to claim product centication. approval. or endorsement by NVLAP. NIST or any agency of the federal government. Non-fnable organically bound matenals present a problem matnx and therefore EMSL recommends graumetnc reduction poor to analysis. Samples received in good condition unless otherwise noted.
    Samples analyzed by EMSL Analytical. Inc. Orlando. FL NVLAP Lab Code 101151-0

[^11]:    EMSt mantans liabity limted to cost of analysis. This report relates onfy to the samples reported and may not be reproduced. except in full. without writen approval by EMSL. EMSL bears no responstbity for sample collection actuties or analytical mettod limitations. Interpretation and use of test resuits are the responsibilty of the citent. This report must not be used by the chent to clam produc: certfication, approval, or endorsement by NVLAP. NIST or any agency of the federal government Non-fnable organicaily bound matenals present a problem matnx and therefore EMSL recommends gravmetnc reduction phor to analysis. Samples received in good condition unless otherwise noted
    Samples analyzed by EMSL Anaiytical. Inc. Ontando. FL NVLAP Lab Code $101151-0$

[^12]:    EMSL mantans habity limited to cost of analysis. This report relates only to the samples reported and may not be reproduced. except in fult. without wntien approval by EMSL. EMSL bears no responstbity for sample colfection actubtes of analytical medhod limtations, nterpretation and use of test results are the responsibility of the chent This report must not he used by the client to clam product cenffication. approval of endorsement by NVLAP. NIST or any agency of the federal govermment Non-fribie organically bound matenats present a problem matnx and therefore EMSL recommends gravmetnc reduction pnor to anaivsis. Samples received in good conditon untess otherwise noted

[^13]:    EMS maintains lability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced. except in full, without whiten approval by EMSL. EMSL bears no responsibity for sample collection activities or analytical method imitations. Interpretation and use of test results are the responsibility of the client This report must not be used by the chent to clam product certification, approval. or endorsement by NVLAP. NIST or any agency of the federal government. Non-fnabie organically bound matenais present a

[^14]:    EMSL mamtans liatuty limited to cost of analysis This report relates only to the samples reported and may not be reproduced, except in fuis, without wntien approval by EMSL. EMSL usears no responsiblity for sample collection activities or anafytical method limitations. Interpretation and use of test results are the responsibilty of the client This report must not be problem matnx and therefore EMSL cettication. approval. of endorsement by NVLAP. NIST or any agency of the federat government. Non-fnable organically bound matenals present a

[^15]:    EMSL maintans labilty limited to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full, without writen approvai by EMSL. EMSL
    bears no responsitulity for sample colfecton activites or analytical method limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the chent to cfam product certification approval, or endorsement by NVLAP. NIST or any agency of the federal govermment Non-friable organically bound matenals present a problem matnx and therefore EMSL recommends gravinetnc reduction prior to analysis. Samples recerved in good condition unless otherwise noted
    Samples analyzed by EMSL Analytical, Inc. Ortando. FL NVLAP Lab Code $101151-0$

[^16]:    Unable to seperate sample Composite analysis

[^17]:    EMSL mantains liablity fimited to cost of analysis. This repont relates only to the samples reported and may not be reproduced. except in full. without written approval by EMSL. EMSL bears no responsibtlity for sample collection activies or analytical method limitations. Interpretation and use of test results are the responsibhty of the chent. This report must no: be used by the chent to clam product certfication, approvai, or endor sement by NVLAP. NIST or any agency of the federal govemment. Non friable organcally bound matenals present a Samples
    Samples analyzed Dy EMSL Analytical. Inc. Orlando. FL NVLAP Lab Code 101151-0

[^18]:    EMSL mantains labity limited to cost of analys!s. This teport relates only to the samples reported and may not be reproduced. except in funl without wniten approval by EMSL. EMSL
     protern matnxand therefore EMSL recommends aramoth present a grametnc feduction pnor to analysis. Samples received in good condition uniess otherwise noted
    Samples analyzed by EMSL Analytical tnc. Orlando. FL NVLAP Lab Code 101151-0

[^19]:    EMSL mantans lability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced. except in full. without wntien approval by EMSL. EMSL bears no responsiblity for sample collection activites or anaiytical method limitations finterpretation and use of test results are the responsibility of the client This repon must not be used by the client to clatm product certication. approval. or endorsement by NVLAP. NIST or any agency of the federal government Non-friable organically bound matenats present a problem thatinx and therefore EMSL recommends grammetnc reduction pnor to analysis. Samples received in good condition unless othenwise noted.
    Samples analyzed by EMS. Analyical inc. Oriando. FL NVLAP Lab Code $101151-0$

[^20]:    EMSL mantains hability limited to cost of analysis. This report relates only to the samples reported and may not be reproduced except in full. without wniten approval by EMSL. EMSL bears no responsibity for sample colection activties or analytical method limitations. interpretation and use of test results are the responisibity of the chent This report must not be

[^21]:    EMSL mamtains habitity limited to cost of analysis. This report reiates onty to the samples reported and may not be reproduced. except in full. without wniten approval by EMSL. EMSL bears no responsibilty for sample collection activites or analytical method limitations. Interpretation and use of test results are the responsibility of the chemt. This report must not be used by the clent to claim produci centification, approvat. or endorsement by NVLAP. NIST or any agency of the federal government. Non-fnable organically bound matenals present a problem matnx and thergfore EMSL recommenos gravmetnc reduction pror to analysis. Samples recerved in good conditon untess otherwise noted
    Samples analyzed by EMSL Analyicat inc Otando. FL NVLAP Lab Code $101151-0$

[^22]:    EMS maintatns hablity limited to cost of anatysis. This report relates onfy to the samples reported and may not be reproduced. except in fill. Without wntten approval by EMSL. EMSL used by the client to claim product certifican actinties or analytical method limitatrons. Interpretation and use of test resuits are the responsibutity of the chent. This repor must not be orobiem matnx and therefore EMSL recommends groval, or endorsement by NLAP. NIST or any agency of the federat government. Non fnable organtcally bound matenals present a

[^23]:    EMSL maintains liablity limited to cost of analysts. This repori relates only to the samples reported and may not be reproduced, except in full, without wotten approvel by EMSL. EMSL used by the chent to clam product certfication approvi or endorsement by NVLAD. NIST or any agency of ter fesuis are the responsiblity of the client. This report must not be problem matnx and therefore EMSL recommends gravmetnc reduction pnor to analysis. Samples received in good cond govenment. Non-fnabie organically bound matenais present a Samples analyzed by FHSL Analutical
    Samples anatyzed by EMSL Analytical. Inc. Orarido, FL NVLAP Lab Code $101151-0$

[^24]:    EMSL marntains labitity fimited to cost of analysis. This report relates only to the samples reported and may not be reproduced. except in full. without writen approval by EMSt. EMSL bears no responsibilty for sample coliection actinties or analytical method limitations. Interpretation and use of test results are the responsibutity of the chent. This report must rot be used by the chent to clarm product certification, approval. or endorsement by NVLAP. NIST or any agency of the federal government. Non-fnable organtically bound matenals present a

[^25]:    EMSL maintains habily timed to cost of analysis. This report relates only to the samples reported and may not be reproduced, except in full. without whiten approval by EMSL. EMS bears no responsibility for sample collection activities or analytical method limitations. Witerpretation and use of test results are the responsibity of the clint. This report must rot be used by the client to cham product certification, approval. of endorsement by NVLAP. NIST or any agency of the federal government Non-friabte organically bound matenals present a problem matnx and therefore EMSL fecommends grawinetnc reduction poor to analysis. Samples received in good condition unless otherwise noted.
    Samples analyzed by EMS L Anardical, Inc. Orlando. FL NVLAP Lab Code 101151-0

[^26]:    EMSL maintains labilty firmited to cost of analysis. This report relates only to the samples reported and may nor be reproduced. except in full, without wntten approval by EMSL. EMSL used by the client to clam product centification approval or endorsement by NVLAP Nist or any andion and of test results are the responsibity of the client. This report must not be used by the client to clam product certication, approvai, or endorsement by NVLAP. NIST or any agency of the federal government. Non-fnatie organicaly tound matenais present a problem matrix and therefore EMSL recommends grammetnc reduction pnor to analysis. Samples received in good conditon uniess otherwise noted
    Samples analyzed by EMSL Analyical, Inc. Ortando. FL NVIAP Lab Code 1011510

[^27]:    EMSL maintans liabilty limited to cost of anatysis. This report relates only to the samples reported and may not be reproduced. except in full, without wntten approval by EMSL. EMS wears no fesponsibility for sample colfection activites or anaiytical mothod immtations. Interpretation and use of test results are the responsibilty of the client This report must not be used by the client to clam product centifation. approval. of endorsement by NVLAP, NiST or any agency of the federal government. Non-fnable organicaily bound matenals present a problem matnx and therefore EMSL recommends gravmetnc reduction phor to analysis. Samples received in good condition untess otherwise noted
    Samples analyzed by EMSL Analytical. Inc. Oriando. FL NVLAP Lab Code 101151-0

[^28]:    EMSL mantains liabilitylimited to cost of analysis. This repon relates only to the samples reported and may not be reproduced. except in fill, without writen approval by EMSL. EMSL bears no responstbitity for sample collection actunties of anatytical mehod limitations. Interpretation and use of test results are the responsibility of the client. This report must not be used by the client to clam product certifcation, approval, or endorsement by NVLAP. NIST or any agency of the federat government. Non-fnable organically bound matenals present a problem matnx and therefore EMSL secommends gravmetnc reduction pnor to analysis. Samples recelved in good condition untess otherwise noted.
    Samples analyzed by EMSL Analytical. Inc. Orfando. FL NVLAP Lab Code 101151-0

[^29]:    EMSL mantatns labilfy limted ic cost of analysis. This report relates oniy to the samptes reported and may not be reproduced except in full, without whtten approval by EMSL. EMSL bears no responsibity for sample colfection activtes or analytical method limitations. Interpretation and use of test resuits are the responsibulty of the cilent. This report must not be used by the client to clam product cenficaton, approval of endorsement by NVLAP. NIST of any agency of the federal government. Non-fnable ofganicaily bound matenals present a problem matnx and therefore EMSL recommends gravmetnc reduction pnor to analysis Samples fecenved fn good condition untess otherwise noted
    Samples analyzed by EMSL Analytical. Inc. Onfando. FL NVLAP Lab Code 101151.0

[^30]:    EMSL maintains habilify lmited to cost of analysis. This report relates only to the samples reported and may nol be reproduced. except in full, withoul wntien approval by EMSL. EMSL bears no responstbity for sample sollection activites or analytical method limitations. Interpretation and use of test resuits are the responsiblity of the chent. This report must not be used by the client to clam product centication. approval. or endorsement by NVLAP. NIST or any agency of the federal government Non-fnable organically bound matenals present a protiem matnx and therefore EMS- recommends gravinetnc reduction pnor to analysis. Samples received in good conditon untess otherwise noted.
    Samples anaiyzed by EMSL Analyucal. Inc, Oriando. FL NVLAP Lab Code 101151-0

[^31]:    EMSL mantains liabity limited to cost of analysts. This report relates onfy to the samples reported and may not be reproduced, except in full. without wnten approval by EMSL. EMSL bears no responsibitity for sample collection activities or analytical method hmitations. Interpretation and use of test results are the responsibilty of the chient. This report must not be used by the chent to clam product Certification, approvai, or endorsement by NVLAP. NIST or any agency of the federai government Non-fnable organicalty bound matenats present a problem matnx and therefore EMSL recommends grammetric reduction pnor to analysis Samples recerved in good condtion untess otherwise noted
    Samples anaiyzed by EMSL Analyical. Inc. Onando. FL NVLAP Lab Code 101151-0

[^32]:    EMSL mantains liablify himtted to cost of analysis. This report relates only to the samples reponted and may not be reproduced. except in full, without writen approval by EMSL. EMSL bears no responsibility for sample collection activites or analytical method immations. Interpretation and use of test results are the responsibitity of the client This report must not be used by the chent to cham product certication, approvai or endorsem ent by NVLAP NIST or any agency of the federal government. Non-fmable organically bound materiais present a problem matnx and therefore EMSL recommends gravmetrc reduction pnor to analysts. Samples received in good condtion untess otherwise noted.
    Samples analyzed by EMSL Anaiytical. Inc. Orando. FL NVLAP Lab Code 101151-0

[^33]:    Moisture Coment Codes: $\mathbf{0}=\mathrm{Ory}$. M-Monst: W Wet; $S$ : Sumated

[^34]:    The qualfier "L" denotes that the reported value is above the calbration range. The actual value may be higher than the value given
    The quamter " denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit).
    The guamer $u$ " denotes that the analyte was not present, and the value preceding the " $U$ is the MDL.
    Per FDEP recommendation, DI water is used instead of sodum bisufate in low-ievel soll vials

[^35]:    The qualifier "L" denotes that the reported value is above the calbration range. The actual value may be higher than the value given.
    The qualifer "I" denotes that the reported value is between the MOL (Method Detection Limit) and the PQL (Practical Quantitation Limit),
    The qualifier "U" denotes that the analyte was not present, and the value preceding the " $U$ " is the MDL.
    Per FDEP recommendation, DI water is used instead of sodum bisulfate in low-tevel soll vials

[^36]:    NR denotes that the surrogate recovery is not reportable due to matrix interterence.

[^37]:    NR denotes that the surogate recovery is not reportable due to matrix interference
    The qualtier "L denotes that the value reported is above the calbration curve.
    The qualier "I denotes that the reported value is between the MoL (Method Detection Limit) and the PQL (Practical Quantitation Limit).
    The qualifer "U" denotes that the analyte was not detected, and the value preceding the "U" is the MOL
    Surogate \% Recovery limits are: p-Terphenyl 66.1-120.

[^38]:    NR denotes that the sumrogate recovery is not reportable due to matrix interference
    The qualfier "L" denotes that the value reported is above the calbration curve.
    The qualfier "I denotes that he reported value is between the MDL (Method Detection Limit and the PQL (Practical Quantiation Limit)
    The qualfier "U" denotes that the anatyte was not detected, and the value preceding the "U" is the MDL.
    Surogate \% Recovery imits are: p-Terphenyl 66.1-120.

[^39]:    NR denotes that the surrogate recovery is not reportable due to matrix interference.
    The qualifier " $L$ " denotes that the value reported is above the calibration curve.
    The quallier "I" denotes that the reported value is between the MDL (Method Detection Limit) and the PQL. (Practical Quantitation Limit).
    The qualifier "U" denotes that the analyte was not detected, and the value preceding the "U" is the MOL.
    Surrogate \% Recovery limits are: OTP 62-109 and C-39 60-118.

[^40]:    R denotes that the surrogate recovery is not reportable due to matrix interference.
    qualifer "L" denotes that the value reported is above the calibration curve.
    The qualifer "p" denotes that the reported value is between the MDL (Method Detection Limit) and the $P Q L$ (Practical Quantitation Limit).
    The qualifier "U" denotes that the analyte was not detected, and the value preceding the "U" is the MOL.
    Surrogate \% Recovery imits are: p-Terpheny1 72.4-130.

[^41]:    Soil samples reported on a dry weight basis unless otherwise indicated on result page.

[^42]:    $\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
    $\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

[^43]:    The qualifier "L" denotes that the reported value is above the calbration range. The actual value may be higher than the value given.
    The qualifer "I" denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit)
    The qualifer " $U$ " denotes that the analyte was not present, and the value preceding the " $U$ " is the MDL
    Per FDEP recommendation, CI water is used instead of sodium bisulfate in low-level soil vials

[^44]:    The qualifer " $L$ " denotes that the reported value is above the calbration range. The actual value may be higher than the value given.
    The qualifier "I" denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit).
    The qualifier "U" denotes that the analyte was not present, and the value preceding the "U" is the MDL.
    Per FDEP recommendation, DI water is used instead of sodium bisulfate in low-level soil vials

[^45]:    T denotes that the surtogate recovery is not reportable due to matrix interference.
    The qualfier "L denotes that the vatue reported is above the calibration curve.
    The qualifier "F denotes that the repoted value is between the MOL (Method Detecton Limit) and the PQL (Practical Quantation Limit).
    The qualfier "U" denotes that the analyte was not detected, and the value preceding the " 4 " is the Mou
    Suroaate \% Recover limits are p-Terpheny $66.1-120$.

[^46]:    NR denotes that the surrogate recovery is not reportable due to matrix interference.
    te qualfer ". "denotes that the value reported is above the calibration curve.
    The qualfier "f denotes that the reported value is between the MDL (Method Detection Limit) and the PQL (Practical Quantitation Limit).
    The qualifier " $U$ " denotes that the anayte was not detected, and the value preceding the "U" is the MDL
    Surrogate \% Recovery limits are: p-Terphenyl 66.1-120.

[^47]:    $\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
    $\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

[^48]:    $U=$ Not detected $\quad$ MDL - Method Detection Limit $\mathrm{PQL}=$ Practical Quantitation Limit
    $\mathrm{L}=$ Indicates value exceeds calibration range
    $\mathrm{I}=$ Result $>=$ MDL but $<$ PQL $\mathrm{J}=$ Estimated value
    $V=$ Indicates analyte found in associated method blank
    $\mathrm{N}=$ Indicates presumptive evidence of a compound

[^49]:    $\mathrm{U}=$ Not detected $\quad$ MDL - Method Detection Limit $\mathrm{PQL}=$ Practical Quantitation Limit
    $\mathrm{L}=$ Indicates value exceeds calibration range
    $\mathrm{I}=$ Result $>=\mathrm{MDL}$ but $<\mathrm{PQL} \mathrm{J}=$ Estimated value
    $V=$ Indicates analyte found in associated method blank
    $\mathrm{N}=$ Indicates presumptive evidence of a compound

[^50]:    $\mathrm{U}=$ Indicates a resuli $<\mathrm{MDL}$
    $\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

[^51]:    $\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
    $1=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

[^52]:    $U=$ Not detected $\quad$ MDL - Method Detection Limit $\mathrm{PQL}=$ Practical Quantitation Limit
    $L=$ Indicates value exceeds calibration range
    $\mathrm{I}=$ Result $>=\mathrm{MDL}$ but $<\mathrm{PQL} \mathrm{J}=$ Estimated value
    $V=$ Indicates analyte found in associated method blank
    $\mathrm{N}=$ Indicates presumptive evidence of a compound

[^53]:    $\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
    $\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

[^54]:    $\mathrm{U}=\mathrm{Not}$ detected
    MDL - Method Detection Limit
    $\mathrm{PQL}=$ Practical Quantitation Limit
    $\mathrm{L}=$ Indicates value exceeds calibration range
    $I=$ Result $>=$ MDL but $<\mathrm{PQL} \quad J=$ Estimated value
    $V=$ Indicates analyte found in associated method blank
    $\mathrm{N}=$ Indicates presumptive evidence of a compound

[^55]:    $\mathrm{U}=$ Indicates a result $<\mathrm{MDL}$
    $\mathrm{I}=$ Indicates a result $>=\mathrm{MDL}$ but $<\mathrm{PQL}$

